Trust Region Methods

Trust Region Methods
Author: A. R. Conn
Publisher: SIAM
Total Pages: 960
Release: 2000-01-01
Genre: Mathematics
ISBN: 0898714605

Mathematics of Computing -- General.

Optimization in Chemical Engineering

Optimization in Chemical Engineering
Author: Suman Dutta
Publisher: Cambridge University Press
Total Pages: 384
Release: 2016-03-11
Genre: Technology & Engineering
ISBN: 1316691799

Optimization is used to determine the most appropriate value of variables under given conditions. The primary focus of using optimisation techniques is to measure the maximum or minimum value of a function depending on the circumstances. This book discusses problem formulation and problem solving with the help of algorithms such as secant method, quasi-Newton method, linear programming and dynamic programming. It also explains important chemical processes such as fluid flow systems, heat exchangers, chemical reactors and distillation systems using solved examples. The book begins by explaining the fundamental concepts followed by an elucidation of various modern techniques including trust-region methods, Levenberg–Marquardt algorithms, stochastic optimization, simulated annealing and statistical optimization. It studies the multi-objective optimization technique and its applications in chemical engineering and also discusses the theory and applications of various optimization software tools including LINGO, MATLAB, MINITAB and GAMS.

Mathematical Programming The State of the Art

Mathematical Programming The State of the Art
Author: A. Bachem
Publisher: Springer Science & Business Media
Total Pages: 662
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642688748

In the late forties, Mathematical Programming became a scientific discipline in its own right. Since then it has experienced a tremendous growth. Beginning with economic and military applications, it is now among the most important fields of applied mathematics with extensive use in engineering, natural sciences, economics, and biological sciences. The lively activity in this area is demonstrated by the fact that as early as 1949 the first "Symposium on Mathe matical Programming" took place in Chicago. Since then mathematical programmers from all over the world have gath ered at the intfrnational symposia of the Mathematical Programming Society roughly every three years to present their recent research, to exchange ideas with their colleagues and to learn about the latest developments in their own and related fields. In 1982, the XI. International Symposium on Mathematical Programming was held at the University of Bonn, W. Germany, from August 23 to 27. It was organized by the Institut fUr Okonometrie und Operations Re search of the University of Bonn in collaboration with the Sonderforschungs bereich 21 of the Deutsche Forschungsgemeinschaft. This volume constitutes part of the outgrowth of this symposium and docu ments its scientific activities. Part I of the book contains information about the symposium, welcoming addresses, lists of committees and sponsors and a brief review about the Ful kerson Prize and the Dantzig Prize which were awarded during the opening ceremony.

Frontiers in PDE-Constrained Optimization

Frontiers in PDE-Constrained Optimization
Author: Harbir Antil
Publisher: Springer
Total Pages: 435
Release: 2018-10-12
Genre: Mathematics
ISBN: 1493986368

This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.

Introduction to Derivative-Free Optimization

Introduction to Derivative-Free Optimization
Author: Andrew R. Conn
Publisher: SIAM
Total Pages: 276
Release: 2009-04-16
Genre: Mathematics
ISBN: 0898716683

The first contemporary comprehensive treatment of optimization without derivatives. This text explains how sampling and model techniques are used in derivative-free methods and how they are designed to solve optimization problems. It is designed to be readily accessible to both researchers and those with a modest background in computational mathematics.

Numerical Optimization

Numerical Optimization
Author: Jorge Nocedal
Publisher: Springer Science & Business Media
Total Pages: 686
Release: 2006-12-11
Genre: Mathematics
ISBN: 0387400656

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming
Author: Jon Lee
Publisher: Springer Science & Business Media
Total Pages: 687
Release: 2011-12-02
Genre: Mathematics
ISBN: 1461419271

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Optimization Algorithms on Matrix Manifolds

Optimization Algorithms on Matrix Manifolds
Author: P.-A. Absil
Publisher: Princeton University Press
Total Pages: 240
Release: 2009-04-11
Genre: Mathematics
ISBN: 1400830249

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

Real-Time Optimization

Real-Time Optimization
Author: Dominique Bonvin
Publisher: MDPI
Total Pages: 255
Release: 2018-07-05
Genre: Electronic book
ISBN: 303842448X

This book is a printed edition of the Special Issue "Real-Time Optimization" that was published in Processes

Hands-On Reinforcement Learning for Games

Hands-On Reinforcement Learning for Games
Author: Micheal Lanham
Publisher: Packt Publishing Ltd
Total Pages: 420
Release: 2020-01-03
Genre: Computers
ISBN: 1839216778

Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow Key FeaturesGet to grips with the different reinforcement and DRL algorithms for game developmentLearn how to implement components such as artificial agents, map and level generation, and audio generationGain insights into cutting-edge RL research and understand how it is similar to artificial general researchBook Description With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications. What you will learnUnderstand how deep learning can be integrated into an RL agentExplore basic to advanced algorithms commonly used in game developmentBuild agents that can learn and solve problems in all types of environmentsTrain a Deep Q-Network (DQN) agent to solve the CartPole balancing problemDevelop game AI agents by understanding the mechanism behind complex AIIntegrate all the concepts learned into new projects or gaming agentsWho this book is for If you’re a game developer looking to implement AI techniques to build next-generation games from scratch, this book is for you. Machine learning and deep learning practitioners, and RL researchers who want to understand how to use self-learning agents in the game domain will also find this book useful. Knowledge of game development and Python programming experience are required.