Trees of Hyperbolic Spaces

Trees of Hyperbolic Spaces
Author: Michael Kapovich
Publisher: American Mathematical Society
Total Pages: 295
Release: 2024-08-15
Genre: Mathematics
ISBN: 1470474255

This book offers an alternative proof of the Bestvina?Feighn combination theorem for trees of hyperbolic spaces and describes uniform quasigeodesics in such spaces. As one of the applications of their description of uniform quasigeodesics, the authors prove the existence of Cannon?Thurston maps for inclusion maps of total spaces of subtrees of hyperbolic spaces and of relatively hyperbolic spaces. They also analyze the structure of Cannon?Thurston laminations in this setting. Furthermore, some group-theoretic applications of these results are discussed. This book also contains background material on coarse geometry and geometric group theory.

Group Theory From A Geometrical Viewpoint

Group Theory From A Geometrical Viewpoint
Author: Alberto Verjovski
Publisher: #N/A
Total Pages: 744
Release: 1991-08-12
Genre:
ISBN: 981456964X

This proceedings presents the latest research materials done on group theory from geometrical viewpoint in particular Gromov's theory of hyperbolic groups, Coxeter groups, Tits buildings and actions on real trees. All these are very active subjects.

Essays in Group Theory

Essays in Group Theory
Author: S.M. Gersten
Publisher: Springer Science & Business Media
Total Pages: 346
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461395860

Essays in Group Theory contains five papers on topics of current interest which were presented in a seminar at MSRI, Berkeley in June, 1985. Special mention should be given to Gromov`s paper, one of the most significant in the field in the last decade. It develops the theory of hyperbolic groups to include a version of small cancellation theory sufficiently powerful to recover deep results of Ol'shanskii and Rips. Each of the remaining papers, by Baumslag and Shalen, Gersten, Shalen, and Stallings contains gems. For example, the reader will delight in Stallings' explicit construction of free actions of orientable surface groups on R-trees. Gersten's paper lays the foundations for a theory of equations over groups and contains a very quick solution to conjugacy problem for a class of hyperbolic groups. Shalen's article reviews the rapidly expanding theory of group actions on R-trees and the Baumslag-Shalen article uses modular representation theory to establish properties of presentations whose relators are pth-powers.

Geometry and Dynamics in Gromov Hyperbolic Metric Spaces

Geometry and Dynamics in Gromov Hyperbolic Metric Spaces
Author: Tushar Das
Publisher: American Mathematical Soc.
Total Pages: 321
Release: 2017-04-14
Genre: Mathematics
ISBN: 1470434652

This book presents the foundations of the theory of groups and semigroups acting isometrically on Gromov hyperbolic metric spaces. Particular emphasis is paid to the geometry of their limit sets and on behavior not found in the proper setting. The authors provide a number of examples of groups which exhibit a wide range of phenomena not to be found in the finite-dimensional theory. The book contains both introductory material to help beginners as well as new research results, and closes with a list of attractive unsolved problems.

Arboreal Group Theory

Arboreal Group Theory
Author: Roger C. Alperin
Publisher: Springer Science & Business Media
Total Pages: 372
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461231426

During the week of September 13, 1988 the Mathematical Sciences Research Institute hosted a four day workshop on Arboreal Group Theory. This volume is the product of that meeting. The program centered on the topic of the theory of groups acting on trees and the various applications to hyperbolic geometry. Topics include the theory of length functions, structure of groups acting freely on trees, spaces of hyperbolic structures and their compactifications, and moduli for tree actions.

Elements of Asymptotic Geometry

Elements of Asymptotic Geometry
Author: Sergei Buyalo
Publisher: European Mathematical Society
Total Pages: 220
Release: 2007
Genre: Mathematics
ISBN: 9783037190364

Asymptotic geometry is the study of metric spaces from a large scale point of view, where the local geometry does not come into play. An important class of model spaces are the hyperbolic spaces (in the sense of Gromov), for which the asymptotic geometry is nicely encoded in the boundary at infinity. In the first part of this book, in analogy with the concepts of classical hyperbolic geometry, the authors provide a systematic account of the basic theory of Gromov hyperbolic spaces. These spaces have been studied extensively in the last twenty years and have found applications in group theory, geometric topology, Kleinian groups, as well as dynamics and rigidity theory. In the second part of the book, various aspects of the asymptotic geometry of arbitrary metric spaces are considered. It turns out that the boundary at infinity approach is not appropriate in the general case, but dimension theory proves useful for finding interesting results and applications. The text leads concisely to some central aspects of the theory. Each chapter concludes with a separate section containing supplementary results and bibliographical notes. Here the theory is also illustrated with numerous examples as well as relations to the neighboring fields of comparison geometry and geometric group theory. The book is based on lectures the authors presented at the Steklov Institute in St. Petersburg and the University of Zurich.

Harmonic Functions on Trees and Buildings

Harmonic Functions on Trees and Buildings
Author: Adam Korǹyi (et al.)
Publisher: American Mathematical Soc.
Total Pages: 194
Release: 1997
Genre: Mathematics
ISBN: 082180605X

This volume presents the proceedings of the workshop "Harmonic Functions on Graphs" held at the Graduate Centre of CUNY in the autumn of 1995. The main papers present material from four minicourses given by leading experts: D. Cartwright, A. Figà-Talamanca, S. Sawyer, and T. Steger. These minicrouses are introductions which gradually progress to deeper and less known branches of the subject. One of the topics treated is buildings, which are discrete analogues of symmetric spaces of arbitrary rank; buildings of rank are trees. Harmonic analysis on buildings is a fairly new and important field of research. One of the minicourses discusses buildings from the combinatorial perspective and another examines them from the p-adic perspective. the third minicourse deals with the connections of trees with p-adic analysis, and the fourth deals with random walks, ie., with the probabilistic side of harmonic functions on trees. The book also contains the extended abstracts of 19 of the 20 lectures given by the participants on their recent results. These abstracts, well detailed and clearly understandable, give a good cross-section of the present state of research in the field.

Fractals in Graz 2001

Fractals in Graz 2001
Author: Peter Grabner
Publisher: Birkhäuser
Total Pages: 288
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034880146

This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders", we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process.

Probability and Real Trees

Probability and Real Trees
Author: Steven N. Evans
Publisher: Springer
Total Pages: 205
Release: 2007-09-26
Genre: Mathematics
ISBN: 3540747982

Random trees and tree-valued stochastic processes are of particular importance in many fields. Using the framework of abstract "tree-like" metric spaces and ideas from metric geometry, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behavior of such objects when the number of vertices goes to infinity. This publication surveys the relevant mathematical background and present some selected applications of the theory.