Travelling Waves in Nonlinear Diffusion-Convection Reaction

Travelling Waves in Nonlinear Diffusion-Convection Reaction
Author: Brian H. Gilding
Publisher: Birkhäuser
Total Pages: 214
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034879644

This monograph has grown out of research we started in 1987, although the foun dations were laid in the 1970's when both of us were working on our doctoral theses, trying to generalize the now classic paper of Oleinik, Kalashnikov and Chzhou on nonlinear degenerate diffusion. Brian worked under the guidance of Bert Peletier at the University of Sussex in Brighton, England, and, later at Delft University of Technology in the Netherlands on extending the earlier mathematics to include nonlinear convection; while Robert worked at Lomonosov State Univer sity in Moscow under the supervision of Anatolii Kalashnikov on generalizing the earlier mathematics to include nonlinear absorption. We first met at a conference held in Rome in 1985. In 1987 we met again in Madrid at the invitation of Ildefonso Diaz, where we were both staying at 'La Residencia'. As providence would have it, the University 'Complutense' closed down during this visit in response to student demonstra tions, and, we were very much left to our own devices. It was natural that we should gravitate to a research topic of common interest. This turned out to be the characterization of the phenomenon of finite speed of propagation for nonlin ear reaction-convection-diffusion equations. Brian had just completed some work on this topic for nonlinear diffusion-convection, while Robert had earlier done the same for nonlinear diffusion-absorption. There was no question but that we bundle our efforts on the general situation.

Control of Self-Organizing Nonlinear Systems

Control of Self-Organizing Nonlinear Systems
Author: Eckehard Schöll
Publisher: Springer
Total Pages: 478
Release: 2016-01-22
Genre: Science
ISBN: 3319280287

The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.

Nonlinear Wave Methods for Charge Transport

Nonlinear Wave Methods for Charge Transport
Author: Luis L. Bonilla
Publisher: John Wiley & Sons
Total Pages: 287
Release: 2009-12-09
Genre: Science
ISBN: 9783527628681

The present book introduces and develops mathematical techniques for the treatment of nonlinear waves and singular perturbation methods at a level that is suitable for graduate students, researchers and faculty throughout the natural sciences and engineering. The practice of implementing these techniques and their value are largely realized by showing their application to problems of nonlinear wave phenomena in electronic transport in solid state materials, especially bulk semiconductors and semiconductor superlattices. The authors are recognized leaders in this field, with more than 30 combined years of contributions.

Entire Solutions for Bistable Lattice Differential Equations with Obstacles

Entire Solutions for Bistable Lattice Differential Equations with Obstacles
Author: Aaron Hoffman
Publisher: American Mathematical Soc.
Total Pages: 132
Release: 2018-01-16
Genre: Mathematics
ISBN: 1470422018

The authors consider scalar lattice differential equations posed on square lattices in two space dimensions. Under certain natural conditions they show that wave-like solutions exist when obstacles (characterized by “holes”) are present in the lattice. Their work generalizes to the discrete spatial setting the results obtained in Berestycki, Hamel, and Matuno (2009) for the propagation of waves around obstacles in continuous spatial domains. The analysis hinges upon the development of sub and super-solutions for a class of discrete bistable reaction-diffusion problems and on a generalization of a classical result due to Aronson and Weinberger that concerns the spreading of localized disturbances.