Transform Methods for Solving Partial Differential Equations

Transform Methods for Solving Partial Differential Equations
Author: Dean G. Duffy
Publisher: CRC Press
Total Pages: 727
Release: 2004-07-15
Genre: Mathematics
ISBN: 1420035142

Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found ana

Partial Differential Equations

Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
Total Pages: 467
Release: 2007-12-21
Genre: Mathematics
ISBN: 0470054565

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Partial Differential Equations and Mathematica

Partial Differential Equations and Mathematica
Author: Prem K. Kythe
Publisher: CRC Press
Total Pages: 440
Release: 2018-10-03
Genre: Mathematics
ISBN: 1482296322

Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.

Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations
Author: James Kirkwood
Publisher: Academic Press
Total Pages: 431
Release: 2012-01-20
Genre: Mathematics
ISBN: 0123869110

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Partial Differential Equations

Partial Differential Equations
Author: T. Hillen
Publisher: FriesenPress
Total Pages: 683
Release: 2019-05-15
Genre: Mathematics
ISBN: 1525550241

Provides more than 150 fully solved problems for linear partial differential equations and boundary value problems. Partial Differential Equations: Theory and Completely Solved Problems offers a modern introduction into the theory and applications of linear partial differential equations (PDEs). It is the material for a typical third year university course in PDEs. The material of this textbook has been extensively class tested over a period of 20 years in about 60 separate classes. The book is divided into two parts. Part I contains the Theory part and covers topics such as a classification of second order PDEs, physical and biological derivations of the heat, wave and Laplace equations, separation of variables, Fourier series, D’Alembert’s principle, Sturm-Liouville theory, special functions, Fourier transforms and the method of characteristics. Part II contains more than 150 fully solved problems, which are ranked according to their difficulty. The last two chapters include sample Midterm and Final exams for this course with full solutions.

Partial Differential Equations

Partial Differential Equations
Author: George F. Carrier
Publisher: Academic Press
Total Pages: 333
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483259161

Partial Differential Equations: Theory and Technique provides formal definitions, notational conventions, and a systematic discussion of partial differential equations. The text emphasizes the acquisition of practical technique in the use of partial differential equations. The book contains discussions on classical second-order equations of diffusion, wave motion, first-order linear and quasi-linear equations, and potential theory. Certain chapters elaborate Green's functions, eigenvalue problems, practical approximation techniques, perturbations (regular and singular), difference equations, and numerical methods. Students of mathematics will find the book very useful.

Partial Differential Equations for Engineers and Scientists

Partial Differential Equations for Engineers and Scientists
Author: J. N. Sharma
Publisher: Alpha Science International, Limited
Total Pages: 362
Release: 2009
Genre: Mathematics
ISBN:

Partial Differential Equations for Engineers and Scientists presents various well known mathematical techniques such as variable of separable method, integral transform techniques and Green's functions method, integral equations and numerical solutions to solve a number of mathematical problems. This comprehensive and compact text book, primarily designed for advanced undergraduate and postgraduate students in mathematics, physics and engineering is enriched with solved examples and supplemented with a variety of exercises at the end of each chapter. The knowledge of advanced calculus, Fourier series and some understanding about ordinary differential equations, finite differences as well as special functions are the prerequisites for the book. Senior undergraduate and postgraduate students offering courses in partial differential equations, researchers, scientists and engineers working in RD organisations would find the book to be most useful.

Introduction to Partial Differential Equations with Applications

Introduction to Partial Differential Equations with Applications
Author: E. C. Zachmanoglou
Publisher: Courier Corporation
Total Pages: 434
Release: 2012-04-20
Genre: Mathematics
ISBN: 048613217X

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.