Handbook of Computer Aided Geometric Design

Handbook of Computer Aided Geometric Design
Author: G. Farin
Publisher: Elsevier
Total Pages: 849
Release: 2002-08-13
Genre: Computers
ISBN: 0444511040

This book provides a comprehensive coverage of the fields Geometric Modeling, Computer-Aided Design, and Scientific Visualization, or Computer-Aided Geometric Design. Leading international experts have contributed, thus creating a one-of-a-kind collection of authoritative articles. There are chapters outlining basic theory in tutorial style, as well as application-oriented articles. Aspects which are covered include: Historical outline Curve and surface methods Scientific Visualization Implicit methods Reverse engineering. This book is meant to be a reference text for researchers in the field as well as an introduction to graduate students wishing to get some exposure to this subject.

Reliability in Computing

Reliability in Computing
Author: Ramon E. Moore
Publisher: Elsevier
Total Pages: 447
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483277844

Perspectives in Computing, Vol. 19: Reliability in Computing: The Role of Interval Methods in Scientific Computing presents a survey of the role of interval methods in reliable scientific computing, including vector arithmetic, language description, convergence, and algorithms. The selection takes a look at arithmetic for vector processors, FORTRAN-SC, and reliable expression evaluation in PASCAL-SC. Discussions focus on interval arithmetic, optimal scalar product, matrix and vector arithmetic, transformation of arithmetic expressions, development of FORTRAN-SC, and language description with examples. The text then examines floating-point standards, algorithms for verified inclusions, applications of differentiation arithmetic, and interval acceleration of convergence. The book ponders on solving systems of linear interval equations, interval least squares, existence of solutions and iterations for nonlinear equations, and interval methods for algebraic equations. Topics include interval methods for single equations, diagnosing collinearity, interval linear equations, effects of nonlinearity, and bounding the solutions. The publication is a valuable source of data for computer science experts and researchers interested in the role of interval methods in reliable scientific computing.

Recent Advances in Iterative Methods

Recent Advances in Iterative Methods
Author: Gene Golub
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461393531

This IMA Volume in Mathematics and its Applications RECENT ADVANCES IN ITERATIVE METHODS is based on the proceedings of a workshop that was an integral part of the 1991-92 IMA program on "Applied Linear Algebra. " Large systems of matrix equations arise frequently in applications and they have the prop erty that they are sparse and/or structured. The purpose of this workshop was to bring together researchers in numerical analysis and various ap plication areas to discuss where such problems arise and possible meth ods of solution. The last two days of the meeting were a celebration dedicated to Gene Golub on the occasion of his sixtieth birthday, with the program arranged by Jack Dongarra and Paul van Dooren. We are grateful to Richard Brualdi, George Cybenko, Alan George, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-long program. We especially thank Gene Golub, Anne Greenbaum, and Mitchell Luskin for organizing this workshop and editing the proceed ings. The financial support of the National Science Foundation and the Min nesota Supercomputer Institute made the workshop possible. A vner Friedman Willard Miller, Jr. xi PREFACE The solution of very large linear algebra problems is an integral part of many scientific computations.

Perturbation Methods, Bifurcation Theory and Computer Algebra

Perturbation Methods, Bifurcation Theory and Computer Algebra
Author: Richard H. Rand
Publisher: Springer Science & Business Media
Total Pages: 254
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461210607

Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.

Computer Aided Proofs in Analysis

Computer Aided Proofs in Analysis
Author: Kenneth R. Meyer
Publisher: Springer Science & Business Media
Total Pages: 264
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461390923

This IMA Volume in Mathematics and its Applications COMPUTER AIDED PROOFS IN ANALYSIS is based on the proceedings of an IMA Participating Institutions (PI) Conference held at the University of Cincinnati in April 1989. Each year the 19 Participating Institutions select, through a competitive process, several conferences proposals from the PIs, for partial funding. This conference brought together leading figures in a number of fields who were interested in finding exact answers to problems in analysis through computer methods. We thank Kenneth Meyer and Dieter Schmidt for organizing the meeting and editing the proceedings. A vner Friedman Willard Miller, Jr. PREFACE Since the dawn of the computer revolution the vast majority of scientific compu tation has dealt with finding approximate solutions of equations. However, during this time there has been a small cadre seeking precise solutions of equations and rigorous proofs of mathematical results. For example, number theory and combina torics have a long history of computer-assisted proofs; such methods are now well established in these fields. In analysis the use of computers to obtain exact results has been fragmented into several schools.