Total Colourings of Graphs

Total Colourings of Graphs
Author: Hian Poh Yap
Publisher: Springer
Total Pages: 140
Release: 2006-11-13
Genre: Mathematics
ISBN: 3540493018

This book provides an up-to-date and rapid introduction to an important and currently active topic in graph theory. The author leads the reader to the forefront of research in this area. Complete and easily readable proofs of all the main theorems, together with numerous examples, exercises and open problems are given. The book is suitable for use as a textbook or as seminar material for advanced undergraduate and graduate students. The references are comprehensive and so it will also be useful for researchers as a handbook.

Cycles and Rays

Cycles and Rays
Author: Gena Hahn
Publisher: Springer Science & Business Media
Total Pages: 274
Release: 2012-12-06
Genre: Mathematics
ISBN: 9400905173

What is the "archetypal" image that comes to mind when one thinks of an infinite graph? What with a finite graph - when it is thought of as opposed to an infinite one? What structural elements are typical for either - by their presence or absence - yet provide a common ground for both? In planning the workshop on "Cycles and Rays" it had been intended from the outset to bring infinite graphs to the fore as much as possible. There never had been a graph theoretical meeting in which infinite graphs were more than "also rans", let alone one in which they were a central theme. In part, this is a matter of fashion, inasmuch as they are perceived as not readily lending themselves to applications, in part it is a matter of psychology stemming from the insecurity that many graph theorists feel in the face of set theory - on which infinite graph theory relies to a considerable extent. The result is that by and large, infinite graph theorists know what is happening in finite graphs but not conversely. Lack of knowledge about infinite graph theory can also be found in authoritative l sources. For example, a recent edition (1987) of a major mathematical encyclopaedia proposes to ". . . restrict [itself] to finite graphs, since only they give a typical theory". If anything, the reverse is true, and needless to say, the graph theoretical world knows better. One may wonder, however, by how much.

Graph Coloring Problems

Graph Coloring Problems
Author: Tommy R. Jensen
Publisher: John Wiley & Sons
Total Pages: 320
Release: 2011-10-24
Genre: Mathematics
ISBN: 1118030745

Contains a wealth of information previously scattered in research journals, conference proceedings and technical reports. Identifies more than 200 unsolved problems. Every problem is stated in a self-contained, extremely accessible format, followed by comments on its history, related results and literature. The book will stimulate research and help avoid efforts on solving already settled problems. Each chapter concludes with a comprehensive list of references which will lead readers to original sources, important contributions and other surveys.

Topics on Perfect Graphs

Topics on Perfect Graphs
Author: V. Chvátal
Publisher: Elsevier
Total Pages: 385
Release: 1984-11-01
Genre: Mathematics
ISBN: 0080871992

The purpose of this book is to present selected results on perfect graphs in a single volume. These take the form of reprinted classical papers, survey papers or new results.

Graph Colouring and the Probabilistic Method

Graph Colouring and the Probabilistic Method
Author: Michael Molloy
Publisher: Springer Science & Business Media
Total Pages: 320
Release: 2013-06-29
Genre: Mathematics
ISBN: 3642040160

Over the past decade, many major advances have been made in the field of graph coloring via the probabilistic method. This monograph, by two of the best on the topic, provides an accessible and unified treatment of these results, using tools such as the Lovasz Local Lemma and Talagrand's concentration inequality.

Handbook of Combinatorial Optimization

Handbook of Combinatorial Optimization
Author: Ding-Zhu Du
Publisher: Springer Science & Business Media
Total Pages: 395
Release: 2006-08-18
Genre: Business & Economics
ISBN: 0387238301

This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set. It can also be regarded as a stand-alone volume presenting chapters dealing with various aspects of the subject in a self-contained way.

Chromatic Graph Theory

Chromatic Graph Theory
Author: Gary Chartrand
Publisher: CRC Press
Total Pages: 503
Release: 2019-11-28
Genre: Mathematics
ISBN: 0429798288

With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition

Graphs, Colourings and the Four-Colour Theorem

Graphs, Colourings and the Four-Colour Theorem
Author: Robert A. Wilson
Publisher: OUP Oxford
Total Pages: 153
Release: 2002-01-24
Genre:
ISBN: 019158360X

The four-colour theorem is one of the famous problems of mathematics, that frustrated generations of mathematicians from its birth in 1852 to its solution (using substantial assistance from electronic computers) in 1976. The theorem asks whether four colours are sufficient to colour all conceivable maps, in such a way that countries with a common border are coloured with different colours. The book discusses various attempts to solve this problem, and some of the mathematics which developed out of these attempts. Much of this mathematics has developed a life of its own, and forms a fascinating part of the subject now known as graph theory. The book is designed to be self-contained, and develops all the graph-theoretical tools needed as it goes along. It includes all the elementary graph theory that should be included in an introduction to the subject, before concentrating on specific topics relevant to the four-colour problem. Part I covers basic graph theory, Euler's polyhedral formula, and the first published false `proof' of the four-colour theorem. Part II ranges widely through related topics, including map-colouring on surfaces with holes, the famous theorems of Kuratowski, Vizing, and Brooks, the conjectures of Hadwiger and Hajos, and much more besides. In Part III we return to the four-colour theorem, and study in detail the methods which finally cracked the problem.

The Mathematical Coloring Book

The Mathematical Coloring Book
Author: Alexander Soifer
Publisher: Springer Science & Business Media
Total Pages: 619
Release: 2008-10-13
Genre: Mathematics
ISBN: 0387746420

This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdös, B.L. van der Waerden, and Henry Baudet.

Topics in Chromatic Graph Theory

Topics in Chromatic Graph Theory
Author: Lowell W. Beineke
Publisher: Cambridge University Press
Total Pages: 416
Release: 2015-05-07
Genre: Mathematics
ISBN: 1316239853

Chromatic graph theory is a thriving area that uses various ideas of 'colouring' (of vertices, edges, and so on) to explore aspects of graph theory. It has links with other areas of mathematics, including topology, algebra and geometry, and is increasingly used in such areas as computer networks, where colouring algorithms form an important feature. While other books cover portions of the material, no other title has such a wide scope as this one, in which acknowledged international experts in the field provide a broad survey of the subject. All fifteen chapters have been carefully edited, with uniform notation and terminology applied throughout. Bjarne Toft (Odense, Denmark), widely recognized for his substantial contributions to the area, acted as academic consultant. The book serves as a valuable reference for researchers and graduate students in graph theory and combinatorics and as a useful introduction to the topic for mathematicians in related fields.