Dimension Groups and Dynamical Systems

Dimension Groups and Dynamical Systems
Author: Fabien Durand
Publisher: Cambridge University Press
Total Pages: 593
Release: 2022-02-03
Genre: Mathematics
ISBN: 1108838685

This is the first self-contained exposition of the connections between symbolic dynamical systems, dimension groups and Bratteli diagrams.

Topological Dimension and Dynamical Systems

Topological Dimension and Dynamical Systems
Author: Michel Coornaert
Publisher: Springer
Total Pages: 239
Release: 2015-06-20
Genre: Mathematics
ISBN: 3319197940

Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts. A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Følner’s characterization of amenability and may be read independently from the rest of the book. Although the contents of this book lead directly to several active areas of current research in mathematics and mathematical physics, the prerequisites needed for reading it remain modest; essentially some familiarities with undergraduate point-set topology and, in order to access the final two chapters, some acquaintance with basic notions in group theory. Topological Dimension and Dynamical Systems is intended for graduate students, as well as researchers interested in topology and dynamical systems. Some of the topics treated in the book directly lead to research areas that remain to be explored.

Dimension Theory in Dynamical Systems

Dimension Theory in Dynamical Systems
Author: Yakov B. Pesin
Publisher: University of Chicago Press
Total Pages: 633
Release: 2008-04-15
Genre: Mathematics
ISBN: 0226662233

The principles of symmetry and self-similarity structure nature's most beautiful creations. For example, they are expressed in fractals, famous for their beautiful but complicated geometric structure, which is the subject of study in dimension theory. And in dynamics the presence of invariant fractals often results in unstable "turbulent-like" motions and is associated with "chaotic" behavior. In this book, Yakov Pesin introduces a new area of research that has recently appeared in the interface between dimension theory and the theory of dynamical systems. Focusing on invariant fractals and their influence on stochastic properties of systems, Pesin provides a comprehensive and systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes the most important accomplishments of this field. Pesin's synthesis of these subjects of broad current research interest will be appreciated both by advanced mathematicians and by a wide range of scientists who depend upon mathematical modeling of dynamical processes.

Dynamical Systems on 2- and 3-Manifolds

Dynamical Systems on 2- and 3-Manifolds
Author: Viacheslav Z. Grines
Publisher: Springer
Total Pages: 314
Release: 2016-11-11
Genre: Mathematics
ISBN: 3319448471

This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.“br> The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.

Infinite-Dimensional Dynamical Systems in Mechanics and Physics

Infinite-Dimensional Dynamical Systems in Mechanics and Physics
Author: Roger Temam
Publisher: Springer Science & Business Media
Total Pages: 517
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468403133

This is the first attempt at a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics. Other areas of science and technology are included where appropriate. The relation between infinite and finite dimensional systems is presented from a synthetic viewpoint and equations considered include reaction-diffusion, Navier-Stokes and other fluid mechanics equations, magnetohydrodynamics, thermohydraulics, pattern formation, Ginzburg-Landau, damped wave and an introduction to inertial manifolds.

Topological Dimension and Dynamical Systems

Topological Dimension and Dynamical Systems
Author: Michel Coornaert
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN: 9783319197951

Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts. A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Følner's characterization of amenability and may be read independently from the rest of the book. Although the contents of this book lead directly to several active areas of current research in mathematics and mathematical physics, the prerequisites needed for reading it remain modest; essentially some familiarities with undergraduate point-set topology and, in order to access the final two chapters, some acquaintance with basic notions in group theory. Topological Dimension and Dynamical Systems is intended for graduate students, as well as researchers interested in topology and dynamical systems. Some of the topics treated in the book directly lead to research areas that remain to be explored.

One-Dimensional Dynamics

One-Dimensional Dynamics
Author: Welington de Melo
Publisher: Springer Science & Business Media
Total Pages: 616
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642780431

One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).

Minimal Flows and Their Extensions

Minimal Flows and Their Extensions
Author: J. Auslander
Publisher: Elsevier
Total Pages: 279
Release: 1988-07-01
Genre: Mathematics
ISBN: 0080872646

This monograph presents developments in the abstract theory of topological dynamics, concentrating on the internal structure of minimal flows (actions of groups on compact Hausdorff spaces for which every orbit is dense) and their homomorphisms (continuous equivariant maps). Various classes of minimal flows (equicontinuous, distal, point distal) are intensively studied, and a general structure theorem is obtained. Another theme is the ``universal'' approach - entire classes of minimal flows are studied, rather than flows in isolation. This leads to the consideration of disjointness of flows, which is a kind of independence condition. Among the topics unique to this book are a proof of the Ellis ``joint continuity theorem'', a characterization of the equicontinuous structure relation, and the aforementioned structure theorem for minimal flows.

Dynamical Systems by Example

Dynamical Systems by Example
Author: Luís Barreira
Publisher: Springer
Total Pages: 223
Release: 2019-04-17
Genre: Mathematics
ISBN: 3030159159

This book comprises an impressive collection of problems that cover a variety of carefully selected topics on the core of the theory of dynamical systems. Aimed at the graduate/upper undergraduate level, the emphasis is on dynamical systems with discrete time. In addition to the basic theory, the topics include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as basic ergodic theory. As in other areas of mathematics, one can gain the first working knowledge of a topic by solving selected problems. It is rare to find large collections of problems in an advanced field of study much less to discover accompanying detailed solutions. This text fills a gap and can be used as a strong companion to an analogous dynamical systems textbook such as the authors’ own Dynamical Systems (Universitext, Springer) or another text designed for a one- or two-semester advanced undergraduate/graduate course. The book is also intended for independent study. Problems often begin with specific cases and then move on to general results, following a natural path of learning. They are also well-graded in terms of increasing the challenge to the reader. Anyone who works through the theory and problems in Part I will have acquired the background and techniques needed to do advanced studies in this area. Part II includes complete solutions to every problem given in Part I with each conveniently restated. Beyond basic prerequisites from linear algebra, differential and integral calculus, and complex analysis and topology, in each chapter the authors recall the notions and results (without proofs) that are necessary to treat the challenges set for that chapter, thus making the text self-contained.

Combinatorial Dynamics And Entropy In Dimension One (2nd Edition)

Combinatorial Dynamics And Entropy In Dimension One (2nd Edition)
Author: Luis Alseda
Publisher: World Scientific Publishing Company
Total Pages: 433
Release: 2000-10-31
Genre: Science
ISBN: 9813105593

This book introduces the reader to the two main directions of one-dimensional dynamics. The first has its roots in the Sharkovskii theorem, which describes the possible sets of periods of all cycles (periodic orbits) of a continuous map of an interval into itself. The whole theory, which was developed based on this theorem, deals mainly with combinatorial objects, permutations, graphs, etc.; it is called combinatorial dynamics. The second direction has its main objective in measuring the complexity of a system, or the degree of “chaos” present in it; for that the topological entropy is used. The book analyzes the combinatorial dynamics and topological entropy for the continuous maps of either an interval or the circle into itself.