Topics In The Theory Of Invariant Subspaces
Download Topics In The Theory Of Invariant Subspaces full books in PDF, epub, and Kindle. Read online free Topics In The Theory Of Invariant Subspaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Heydar Radjavi |
Publisher | : Springer Science & Business Media |
Total Pages | : 231 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642655742 |
In recent years there has been a large amount of work on invariant subspaces, motivated by interest in the structure of non-self-adjoint of the results have been obtained in operators on Hilbert space. Some the context of certain general studies: the theory of the characteristic operator function, initiated by Livsic; the study of triangular models by Brodskii and co-workers; and the unitary dilation theory of Sz. Nagy and Foia!? Other theorems have proofs and interest independent of any particular structure theory. Since the leading workers in each of the structure theories have written excellent expositions of their work, (cf. Sz.-Nagy-Foia!? [1], Brodskii [1], and Gohberg-Krein [1], [2]), in this book we have concentrated on results independent of these theories. We hope that we have given a reasonably complete survey of such results and suggest that readers consult the above references for additional information. The table of contents indicates the material covered. We have restricted ourselves to operators on separable Hilbert space, in spite of the fact that most of the theorems are valid in all Hilbert spaces and many hold in Banach spaces as well. We felt that this restriction was sensible since it eases the exposition and since the separable-Hilbert space case of each of the theorems is generally the most interesting and potentially the most useful case.
Author | : Israel Gohberg |
Publisher | : SIAM |
Total Pages | : 706 |
Release | : 2006-03-01 |
Genre | : Mathematics |
ISBN | : 089871608X |
This unique book addresses advanced linear algebra using invariant subspaces as the central notion and main tool. It comprehensively covers geometrical, algebraic, topological, and analytic properties of invariant subspaces, laying clear mathematical foundations for linear systems theory with a thorough treatment of analytic perturbation theory for matrix functions.
Author | : Carl M. Pearcy |
Publisher | : American Mathematical Soc. |
Total Pages | : 254 |
Release | : 1974-12-31 |
Genre | : Mathematics |
ISBN | : 082181513X |
Deals with various aspects of the theory of bounded linear operators on Hilbert space. This book offers information on weighted shift operators with scalar weights.
Author | : Heydar Radjavi |
Publisher | : Courier Corporation |
Total Pages | : 270 |
Release | : 2011-11-30 |
Genre | : Mathematics |
ISBN | : 0486153029 |
Broad survey focuses on operators on separable Hilbert spaces. Topics include normal operators, analytic functions of operators, shift operators, invariant subspace lattices, compact operators, invariant and hyperinvariant subspaces, more. 1973 edition.
Author | : B. Beauzamy |
Publisher | : Elsevier |
Total Pages | : 373 |
Release | : 1988-10-01 |
Genre | : Mathematics |
ISBN | : 0080960898 |
This monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given.Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples.In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions.
Author | : Leiba Rodman |
Publisher | : Princeton University Press |
Total Pages | : 378 |
Release | : 2014-08-24 |
Genre | : Mathematics |
ISBN | : 0691161852 |
Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.
Author | : Carlos S. Kubrusly |
Publisher | : Springer Science & Business Media |
Total Pages | : 152 |
Release | : 1997-08-19 |
Genre | : Mathematics |
ISBN | : 9780817639921 |
By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters.
Author | : Peter van Overschee |
Publisher | : Springer Science & Business Media |
Total Pages | : 263 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1461304652 |
Subspace Identification for Linear Systems focuses on the theory, implementation and applications of subspace identification algorithms for linear time-invariant finite- dimensional dynamical systems. These algorithms allow for a fast, straightforward and accurate determination of linear multivariable models from measured input-output data. The theory of subspace identification algorithms is presented in detail. Several chapters are devoted to deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms. For each case, the geometric properties are stated in a main 'subspace' Theorem. Relations to existing algorithms and literature are explored, as are the interconnections between different subspace algorithms. The subspace identification theory is linked to the theory of frequency weighted model reduction, which leads to new interpretations and insights. The implementation of subspace identification algorithms is discussed in terms of the robust and computationally efficient RQ and singular value decompositions, which are well-established algorithms from numerical linear algebra. The algorithms are implemented in combination with a whole set of classical identification algorithms, processing and validation tools in Xmath's ISID, a commercially available graphical user interface toolbox. The basic subspace algorithms in the book are also implemented in a set of Matlab files accompanying the book. An application of ISID to an industrial glass tube manufacturing process is presented in detail, illustrating the power and user-friendliness of the subspace identification algorithms and of their implementation in ISID. The identified model allows for an optimal control of the process, leading to a significant enhancement of the production quality. The applicability of subspace identification algorithms in industry is further illustrated with the application of the Matlab files to ten practical problems. Since all necessary data and Matlab files are included, the reader can easily step through these applications, and thus get more insight in the algorithms. Subspace Identification for Linear Systems is an important reference for all researchers in system theory, control theory, signal processing, automization, mechatronics, chemical, electrical, mechanical and aeronautical engineering.
Author | : Igor Dolgachev |
Publisher | : Cambridge University Press |
Total Pages | : 244 |
Release | : 2003-08-07 |
Genre | : Mathematics |
ISBN | : 9780521525480 |
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.
Author | : Henry Helson |
Publisher | : |
Total Pages | : 152 |
Release | : 1964 |
Genre | : Functions |
ISBN | : |