Probability on Compact Lie Groups

Probability on Compact Lie Groups
Author: David Applebaum
Publisher: Springer
Total Pages: 236
Release: 2014-06-26
Genre: Mathematics
ISBN: 3319078429

Probability theory on compact Lie groups deals with the interaction between “chance” and “symmetry,” a beautiful area of mathematics of great interest in its own sake but which is now also finding increasing applications in statistics and engineering (particularly with respect to signal processing). The author gives a comprehensive introduction to some of the principle areas of study, with an emphasis on applicability. The most important topics presented are: the study of measures via the non-commutative Fourier transform, existence and regularity of densities, properties of random walks and convolution semigroups of measures and the statistical problem of deconvolution. The emphasis on compact (rather than general) Lie groups helps readers to get acquainted with what is widely seen as a difficult field but which is also justified by the wealth of interesting results at this level and the importance of these groups for applications. The book is primarily aimed at researchers working in probability, stochastic analysis and harmonic analysis on groups. It will also be of interest to mathematicians working in Lie theory and physicists, statisticians and engineers who are working on related applications. A background in first year graduate level measure theoretic probability and functional analysis is essential; a background in Lie groups and representation theory is certainly helpful but the first two chapters also offer orientation in these subjects.

Stochastic Models, Information Theory, and Lie Groups, Volume 1

Stochastic Models, Information Theory, and Lie Groups, Volume 1
Author: Gregory S. Chirikjian
Publisher: Springer Science & Business Media
Total Pages: 397
Release: 2009-09-02
Genre: Mathematics
ISBN: 0817648038

This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras
Author: Alexander A. Kirillov
Publisher: Cambridge University Press
Total Pages: 237
Release: 2008-07-31
Genre: Mathematics
ISBN: 0521889693

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Hilbert's Fifth Problem and Related Topics

Hilbert's Fifth Problem and Related Topics
Author: Terence Tao
Publisher: American Mathematical Soc.
Total Pages: 354
Release: 2014-07-18
Genre: Mathematics
ISBN: 147041564X

In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.

Lie Groups and Symmetric Spaces

Lie Groups and Symmetric Spaces
Author: Semen Grigorʹevich Gindikin
Publisher: American Mathematical Soc.
Total Pages: 372
Release: 2003
Genre: Geometry, Differential
ISBN: 9780821834725

The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician, F. I. Karpelevich (1927-2000). Of particular interest are the survey articles by Sawyer on the Abel transform on noncompact Riemannian symmetric spaces, and by Anker and Ostellari on estimates for heat kernels on such spaces, as well as thearticle by Bernstein and Gindikin on integral geometry for families of curves. There are also many research papers on topics of current interest. The book is suitable for graduate students and research mathematicians interested in harmonic analysis and representation theory.

Analysis on Lie Groups

Analysis on Lie Groups
Author: Jacques Faraut
Publisher: Cambridge University Press
Total Pages: 314
Release: 2008-05-22
Genre: Mathematics
ISBN: 9780521719308

This self-contained text concentrates on the perspective of analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author describes, in detail, many interesting examples, including formulas which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups.

Stochastic Models, Information Theory, and Lie Groups, Volume 2

Stochastic Models, Information Theory, and Lie Groups, Volume 2
Author: Gregory S. Chirikjian
Publisher: Springer Science & Business Media
Total Pages: 460
Release: 2011-11-15
Genre: Mathematics
ISBN: 0817649433

This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises, motivating examples, and real-world applications make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.

Lie Group Machine Learning

Lie Group Machine Learning
Author: Fanzhang Li
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 534
Release: 2018-11-05
Genre: Computers
ISBN: 3110499509

This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artifi cial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artifi cial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. Li Fanzhang is professor at the Soochow University, China. He is director of network security engineering laboratory in Jiangsu Province and is also the director of the Soochow Institute of industrial large data. He published more than 200 papers, 7 academic monographs, and 4 textbooks. Zhang Li is professor at the School of Computer Science and Technology of the Soochow University. She published more than 100 papers in journals and conferences, and holds 23 patents. Zhang Zhao is currently an associate professor at the School of Computer Science and Technology of the Soochow University. He has authored and co-authored more than 60 technical papers.

High-Dimensional Probability

High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
Total Pages: 299
Release: 2018-09-27
Genre: Business & Economics
ISBN: 1108415199

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Topics in Groups and Geometry

Topics in Groups and Geometry
Author: Tullio Ceccherini-Silberstein
Publisher: Springer Nature
Total Pages: 468
Release: 2022-01-01
Genre: Mathematics
ISBN: 3030881091

This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov’s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov’s theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research which is still active today. The purpose of the book is to collect these naturally related results together in one place, most of which are scattered throughout the literature, some of them appearing here in book form for the first time. In this way, the connections between these topics are revealed, providing a pleasant introduction to geometric group theory based on ideas surrounding Gromov's theorem. The book will be of interest to mature undergraduate and graduate students in mathematics who are familiar with basic group theory and topology, and who wish to learn more about geometric, analytic, and probabilistic aspects of infinite groups.