Topics in Non-Gaussian Signal Processing

Topics in Non-Gaussian Signal Processing
Author: Edward J. Wegman
Publisher: Springer Science & Business Media
Total Pages: 246
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461388597

Non-Gaussian Signal Processing is a child of a technological push. It is evident that we are moving from an era of simple signal processing with relatively primitive electronic cir cuits to one in which digital processing systems, in a combined hardware-software configura. tion, are quite capable of implementing advanced mathematical and statistical procedures. Moreover, as these processing techniques become more sophisticated and powerful, the sharper resolution of the resulting system brings into question the classic distributional assumptions of Gaussianity for both noise and signal processes. This in turn opens the door to a fundamental reexamination of structure and inference methods for non-Gaussian sto chastic processes together with the application of such processes as models in the context of filtering, estimation, detection and signal extraction. Based on the premise that such a fun damental reexamination was timely, in 1981 the Office of Naval Research initiated a research effort in Non-Gaussian Signal Processing under the Selected Research Opportunities Program.

Signal Detection in Non-Gaussian Noise

Signal Detection in Non-Gaussian Noise
Author: Saleem A. Kassam
Publisher: Springer Science & Business Media
Total Pages: 244
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 146123834X

This book contains a unified treatment of a class of problems of signal detection theory. This is the detection of signals in addi tive noise which is not required to have Gaussian probability den sity functions in its statistical description. For the most part the material developed here can be classified as belonging to the gen eral body of results of parametric theory. Thus the probability density functions of the observations are assumed to be known, at least to within a finite number of unknown parameters in a known functional form. Of course the focus is on noise which is not Gaussian; results for Gaussian noise in the problems treated here become special cases. The contents also form a bridge between the classical results of signal detection in Gaussian noise and those of nonparametric and robust signal detection, which are not con sidered in this book. Three canonical problems of signal detection in additive noise are covered here. These allow between them formulation of a range of specific detection problems arising in applications such as radar and sonar, binary signaling, and pattern recognition and classification. The simplest to state and perhaps the most widely studied of all is the problem of detecting a completely known deterministic signal in noise. Also considered here is the detection random non-deterministic signal in noise. Both of these situa of a tions may arise for observation processes of the low-pass type and also for processes of the band-pass type.

Topics in Non-Gaussian Signal Processing

Topics in Non-Gaussian Signal Processing
Author: Edward J. Wegman
Publisher: Springer
Total Pages: 0
Release: 1988-11-28
Genre: Technology & Engineering
ISBN: 9780387969275

Non-Gaussian Signal Processing is a child of a technological push. It is evident that we are moving from an era of simple signal processing with relatively primitive electronic cir cuits to one in which digital processing systems, in a combined hardware-software configura. tion, are quite capable of implementing advanced mathematical and statistical procedures. Moreover, as these processing techniques become more sophisticated and powerful, the sharper resolution of the resulting system brings into question the classic distributional assumptions of Gaussianity for both noise and signal processes. This in turn opens the door to a fundamental reexamination of structure and inference methods for non-Gaussian sto chastic processes together with the application of such processes as models in the context of filtering, estimation, detection and signal extraction. Based on the premise that such a fun damental reexamination was timely, in 1981 the Office of Naval Research initiated a research effort in Non-Gaussian Signal Processing under the Selected Research Opportunities Program.

Think DSP

Think DSP
Author: Allen B. Downey
Publisher: "O'Reilly Media, Inc."
Total Pages: 172
Release: 2016-07-12
Genre: Technology & Engineering
ISBN: 149193851X

If you understand basic mathematics and know how to program with Python, you’re ready to dive into signal processing. While most resources start with theory to teach this complex subject, this practical book introduces techniques by showing you how they’re applied in the real world. In the first chapter alone, you’ll be able to decompose a sound into its harmonics, modify the harmonics, and generate new sounds. Author Allen Downey explains techniques such as spectral decomposition, filtering, convolution, and the Fast Fourier Transform. This book also provides exercises and code examples to help you understand the material. You’ll explore: Periodic signals and their spectrums Harmonic structure of simple waveforms Chirps and other sounds whose spectrum changes over time Noise signals and natural sources of noise The autocorrelation function for estimating pitch The discrete cosine transform (DCT) for compression The Fast Fourier Transform for spectral analysis Relating operations in time to filters in the frequency domain Linear time-invariant (LTI) system theory Amplitude modulation (AM) used in radio Other books in this series include Think Stats and Think Bayes, also by Allen Downey.

An Introduction to Statistical Signal Processing

An Introduction to Statistical Signal Processing
Author: Robert M. Gray
Publisher: Cambridge University Press
Total Pages: 479
Release: 2004-12-02
Genre: Technology & Engineering
ISBN: 1139456288

This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.

Modern Signal Processing

Modern Signal Processing
Author: Xian-Da Zhang
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 602
Release: 2022-12-05
Genre: Technology & Engineering
ISBN: 3110475561

The book systematically introduces theories of frequently-used modern signal processing methods and technologies, and focuses discussions on stochastic signal, parameter estimation, modern spectral estimation, adaptive filter, high-order signal analysis and non-linear transformation in time-domain signal analysis. With abundant exercises, the book is an essential reference for graduate students in electrical engineering and information science.

Machine Learning for Signal Processing

Machine Learning for Signal Processing
Author: Max A. Little
Publisher: Oxford University Press, USA
Total Pages: 378
Release: 2019
Genre: Computers
ISBN: 0198714939

Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.

Issues in Electronic Circuits, Devices, and Materials: 2011 Edition

Issues in Electronic Circuits, Devices, and Materials: 2011 Edition
Author:
Publisher: ScholarlyEditions
Total Pages: 3775
Release: 2012-01-09
Genre: Technology & Engineering
ISBN: 146496372X

Issues in Electronic Circuits, Devices, and Materials: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Electronic Circuits, Devices, and Materials. The editors have built Issues in Electronic Circuits, Devices, and Materials: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Electronic Circuits, Devices, and Materials in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Electronic Circuits, Devices, and Materials: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Non-Gaussian Statistical Communication Theory

Non-Gaussian Statistical Communication Theory
Author: David Middleton
Publisher: John Wiley & Sons
Total Pages: 662
Release: 2012-05-11
Genre: Technology & Engineering
ISBN: 1118161955

The book is based on the observation that communication is the central operation of discovery in all the sciences. In its "active mode" we use it to "interrogate" the physical world, sending appropriate "signals" and receiving nature's "reply". In the "passive mode" we receive nature's signals directly. Since we never know a prioriwhat particular return signal will be forthcoming, we must necessarily adopt a probabilistic model of communication. This has developed over the approximately seventy years since it's beginning, into a Statistical Communication Theory (or SCT). Here it is the set or ensemble of possible results which is meaningful. From this ensemble we attempt to construct in the appropriate model format, based on our understanding of the observed physical data and on the associated statistical mechanism, analytically represented by suitable probability measures. Since its inception in the late '30's of the last century, and in particular subsequent to World War II, SCT has grown into a major field of study. As we have noted above, SCT is applicable to all branches of science. The latter itself is inherently and ultimately probabilistic at all levels. Moreover, in the natural world there is always a random background "noise" as well as an inherent a priori uncertainty in the presentation of deterministic observations, i.e. those which are specifically obtained, a posteriori. The purpose of the book is to introduce Non-Gaussian statistical communication theory and demonstrate how the theory improves probabilistic model. The book was originally planed to include 24 chapters as seen in the table of preface. Dr. Middleton completed first 10 chapters prior to his passing in 2008. Bibliography which represents remaining chapters are put together by the author's close colleagues; Drs. Vincent Poor, Leon Cohen and John Anderson. email [email protected] to request Ch.10