Topics In Large Scale Statistical Inference
Download Topics In Large Scale Statistical Inference full books in PDF, epub, and Kindle. Read online free Topics In Large Scale Statistical Inference ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bradley Efron |
Publisher | : Cambridge University Press |
Total Pages | : |
Release | : 2012-11-29 |
Genre | : Mathematics |
ISBN | : 1139492136 |
We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.
Author | : Bradley Efron |
Publisher | : Cambridge University Press |
Total Pages | : 496 |
Release | : 2016-07-21 |
Genre | : Mathematics |
ISBN | : 1108107958 |
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Author | : Deborah G. Mayo |
Publisher | : Cambridge University Press |
Total Pages | : 503 |
Release | : 2018-09-20 |
Genre | : Mathematics |
ISBN | : 1108563309 |
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Author | : Bradley Efron |
Publisher | : Cambridge University Press |
Total Pages | : 514 |
Release | : 2021-06-17 |
Genre | : Mathematics |
ISBN | : 1108915876 |
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.
Author | : Larry Wasserman |
Publisher | : Springer Science & Business Media |
Total Pages | : 446 |
Release | : 2013-12-11 |
Genre | : Mathematics |
ISBN | : 0387217363 |
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Author | : Anthony Almudevar |
Publisher | : CRC Press |
Total Pages | : 1059 |
Release | : 2021-12-30 |
Genre | : Mathematics |
ISBN | : 1000488071 |
Theory of Statistical Inference is designed as a reference on statistical inference for researchers and students at the graduate or advanced undergraduate level. It presents a unified treatment of the foundational ideas of modern statistical inference, and would be suitable for a core course in a graduate program in statistics or biostatistics. The emphasis is on the application of mathematical theory to the problem of inference, leading to an optimization theory allowing the choice of those statistical methods yielding the most efficient use of data. The book shows how a small number of key concepts, such as sufficiency, invariance, stochastic ordering, decision theory and vector space algebra play a recurring and unifying role. The volume can be divided into four sections. Part I provides a review of the required distribution theory. Part II introduces the problem of statistical inference. This includes the definitions of the exponential family, invariant and Bayesian models. Basic concepts of estimation, confidence intervals and hypothesis testing are introduced here. Part III constitutes the core of the volume, presenting a formal theory of statistical inference. Beginning with decision theory, this section then covers uniformly minimum variance unbiased (UMVU) estimation, minimum risk equivariant (MRE) estimation and the Neyman-Pearson test. Finally, Part IV introduces large sample theory. This section begins with stochastic limit theorems, the δ-method, the Bahadur representation theorem for sample quantiles, large sample U-estimation, the Cramér-Rao lower bound and asymptotic efficiency. A separate chapter is then devoted to estimating equation methods. The volume ends with a detailed development of large sample hypothesis testing, based on the likelihood ratio test (LRT), Rao score test and the Wald test. Features This volume includes treatment of linear and nonlinear regression models, ANOVA models, generalized linear models (GLM) and generalized estimating equations (GEE). An introduction to decision theory (including risk, admissibility, classification, Bayes and minimax decision rules) is presented. The importance of this sometimes overlooked topic to statistical methodology is emphasized. The volume emphasizes throughout the important role that can be played by group theory and invariance in statistical inference. Nonparametric (rank-based) methods are derived by the same principles used for parametric models and are therefore presented as solutions to well-defined mathematical problems, rather than as robust heuristic alternatives to parametric methods. Each chapter ends with a set of theoretical and applied exercises integrated with the main text. Problems involving R programming are included. Appendices summarize the necessary background in analysis, matrix algebra and group theory.
Author | : Thorsten Dickhaus |
Publisher | : Springer Science & Business Media |
Total Pages | : 182 |
Release | : 2014-01-23 |
Genre | : Science |
ISBN | : 3642451829 |
This monograph will provide an in-depth mathematical treatment of modern multiple test procedures controlling the false discovery rate (FDR) and related error measures, particularly addressing applications to fields such as genetics, proteomics, neuroscience and general biology. The book will also include a detailed description how to implement these methods in practice. Moreover new developments focusing on non-standard assumptions are also included, especially multiple tests for discrete data. The book primarily addresses researchers and practitioners but will also be beneficial for graduate students.
Author | : D.A. Sprott |
Publisher | : Springer Science & Business Media |
Total Pages | : 254 |
Release | : 2000-06-22 |
Genre | : Mathematics |
ISBN | : 0387950192 |
A treatment of the problems of inference associated with experiments in science, with the emphasis on techniques for dividing the sample information into various parts, such that the diverse problems of inference that arise from repeatable experiments may be addressed. A particularly valuable feature is the large number of practical examples, many of which use data taken from experiments published in various scientific journals. This book evolved from the authors own courses on statistical inference, and assumes an introductory course in probability, including the calculation and manipulation of probability functions and density functions, transformation of variables and the use of Jacobians. While this is a suitable text book for advanced undergraduate, Masters, and Ph.D. statistics students, it may also be used as a reference book.
Author | : Peter Bühlmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 568 |
Release | : 2011-06-08 |
Genre | : Mathematics |
ISBN | : 364220192X |
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Author | : D. R. Cox |
Publisher | : Cambridge University Press |
Total Pages | : 227 |
Release | : 2006-08-10 |
Genre | : Mathematics |
ISBN | : 1139459139 |
In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses.