Topics in Hyperplane Arrangements, Polytopes and Box-Splines

Topics in Hyperplane Arrangements, Polytopes and Box-Splines
Author: Corrado De Concini
Publisher: Springer Science & Business Media
Total Pages: 387
Release: 2010-08-30
Genre: Mathematics
ISBN: 0387789626

Topics in Hyperplane Arrangements, Polytopes and Box-Splines brings together many areas of research that focus on methods to compute the number of integral points in suitable families or variable polytopes. The topics introduced expand upon differential and difference equations, approximation theory, cohomology, and module theory. This book, written by two distinguished authors, engages a broad audience by proving the a strong foudation. This book may be used in the classroom setting as well as a reference for researchers.

Topics in Hyperplane Arrangements

Topics in Hyperplane Arrangements
Author: Marcelo Aguiar
Publisher: American Mathematical Soc.
Total Pages: 639
Release: 2017-11-22
Genre: Mathematics
ISBN: 1470437112

This monograph studies the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. It provides a careful, organized and unified treatment of several recent developments in the field, and brings forth many new ideas and results. It has two parts, each divided into eight chapters, and five appendices with background material. Part I gives a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes and other geometric notions associated with arrangements. The Tits monoid plays a central role. Another important object is the category of lunes which generalizes the classical associative operad. Also discussed are the descent and lune identities, distance functions on chambers, and the combinatorics of the braid arrangement and related examples. Part II studies the structure and representation theory of the Tits algebra of an arrangement. It gives a detailed analysis of idempotents and Peirce decompositions, and connects them to the classical theory of Eulerian idempotents. It introduces the space of Lie elements of an arrangement which generalizes the classical Lie operad. This space is the last nonzero power of the radical of the Tits algebra. It is also the socle of the left ideal of chambers and of the right ideal of Zie elements. Zie elements generalize the classical Lie idempotents. They include Dynkin elements associated to generic half-spaces which generalize the classical Dynkin idempotent. Another important object is the lune-incidence algebra which marks the beginning of noncommutative Möbius theory. These ideas are also brought upon the study of the Solomon descent algebra. The monograph is written with clarity and in sufficient detail to make it accessible to graduate students. It can also serve as a useful reference to experts.

Hyperplane Arrangements

Hyperplane Arrangements
Author: Alexandru Dimca
Publisher: Springer
Total Pages: 208
Release: 2017-03-28
Genre: Mathematics
ISBN: 3319562215

This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arrangement theory, where discrete mathematics, in the form of combinatorics and arithmetic, meets continuous mathematics, in the form of the topology and Hodge theory of complex algebraic varieties. The topics discussed in this book range from elementary combinatorics and discrete geometry to more advanced material on mixed Hodge structures, logarithmic connections and Milnor fibrations. The author covers a lot of ground in a relatively short amount of space, with a focus on defining concepts carefully and giving proofs of theorems in detail where needed. Including a number of surprising results and tantalizing open problems, this timely book also serves to acquaint the reader with the rapidly expanding literature on the subject. Hyperplane Arrangements will be particularly useful to graduate students and researchers who are interested in algebraic geometry or algebraic topology. The book contains numerous exercises at the end of each chapter, making it suitable for courses as well as self-study.

Arrangements of Hyperplanes

Arrangements of Hyperplanes
Author: Peter Orlik
Publisher: Springer Science & Business Media
Total Pages: 352
Release: 1992-08-06
Genre: Mathematics
ISBN: 9783540552598

An arrangement of hyperplanes is a finite collection of codimension one affine subspaces in a finite dimensional vector space. Arrangements have emerged independently as important objects in various fields of mathematics such as combinatorics, braids, configuration spaces, representation theory, reflection groups, singularity theory, and in computer science and physics. This book is the first comprehensive study of the subject. It treats arrangements with methods from combinatorics, algebra, algebraic geometry, topology, and group actions. It emphasizes general techniques which illuminate the connections among the different aspects of the subject. Its main purpose is to lay the foundations of the theory. Consequently, it is essentially self-contained and proofs are provided. Nevertheless, there are several new results here. In particular, many theorems that were previously known only for central arrangements are proved here for the first time in completegenerality. The text provides the advanced graduate student entry into a vital and active area of research. The working mathematician will findthe book useful as a source of basic results of the theory, open problems, and a comprehensive bibliography of the subject.

Moduli of Weighted Hyperplane Arrangements

Moduli of Weighted Hyperplane Arrangements
Author: Valery Alexeev
Publisher: Birkhäuser
Total Pages: 112
Release: 2015-05-18
Genre: Mathematics
ISBN: 3034809158

This book focuses on a large class of geometric objects in moduli theory and provides explicit computations to investigate their families. Concrete examples are developed that take advantage of the intricate interplay between Algebraic Geometry and Combinatorics. Compactifications of moduli spaces play a crucial role in Number Theory, String Theory, and Quantum Field Theory – to mention just a few. In particular, the notion of compactification of moduli spaces has been crucial for solving various open problems and long-standing conjectures. Further, the book reports on compactification techniques for moduli spaces in a large class where computations are possible, namely that of weighted stable hyperplane arrangements (shas).

Combinatorial Reciprocity Theorems

Combinatorial Reciprocity Theorems
Author: Matthias Beck
Publisher: American Mathematical Soc.
Total Pages: 325
Release: 2018-12-12
Genre: Mathematics
ISBN: 147042200X

Combinatorial reciprocity is a very interesting phenomenon, which can be described as follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics. Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.

Lectures on Discrete Geometry

Lectures on Discrete Geometry
Author: Jiri Matousek
Publisher: Springer Science & Business Media
Total Pages: 491
Release: 2013-12-01
Genre: Mathematics
ISBN: 1461300398

The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.

Geometric Combinatorics

Geometric Combinatorics
Author: Ezra Miller
Publisher: American Mathematical Soc.
Total Pages: 705
Release: 2007
Genre: Combinatorial analysis
ISBN: 0821837362

Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.

Classical Algebraic Geometry

Classical Algebraic Geometry
Author: Igor V. Dolgachev
Publisher: Cambridge University Press
Total Pages: 653
Release: 2012-08-16
Genre: Mathematics
ISBN: 1139560786

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.

Perspectives in Lie Theory

Perspectives in Lie Theory
Author: Filippo Callegaro
Publisher: Springer
Total Pages: 465
Release: 2017-12-07
Genre: Mathematics
ISBN: 3319589717

Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics such as: structure and representation theory of vertex algebras, Lie algebras and superalgebras, as well as hyperplane arrangements with different approaches, ranging from geometry and topology to combinatorics.