Topics In Computational Graph Theory
Download Topics In Computational Graph Theory full books in PDF, epub, and Kindle. Read online free Topics In Computational Graph Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Gottfried Tinhofer |
Publisher | : Springer Science & Business Media |
Total Pages | : 282 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 3709190762 |
One ofthe most important aspects in research fields where mathematics is "applied is the construction of a formal model of a real system. As for structural relations, graphs have turned out to provide the most appropriate tool for setting up the mathematical model. This is certainly one of the reasons for the rapid expansion in graph theory during the last decades. Furthermore, in recent years it also became clear that the two disciplines of graph theory and computer science have very much in common, and that each one has been capable of assisting significantly in the development of the other. On one hand, graph theorists have found that many of their problems can be solved by the use of com puting techniques, and on the other hand, computer scientists have realized that many of their concepts, with which they have to deal, may be conveniently expressed in the lan guage of graph theory, and that standard results in graph theory are often very relevant to the solution of problems concerning them. As a consequence, a tremendous number of publications has appeared, dealing with graphtheoretical problems from a computational point of view or treating computational problems using graph theoretical concepts.
Author | : Terry A. McKee |
Publisher | : SIAM |
Total Pages | : 213 |
Release | : 1999-01-01 |
Genre | : Mathematics |
ISBN | : 9780898719802 |
Finally there is a book that presents real applications of graph theory in a unified format. This book is the only source for an extended, concentrated focus on the theory and techniques common to various types of intersection graphs. It is a concise treatment of the aspects of intersection graphs that interconnect many standard concepts and form the foundation of a surprising array of applications to biology, computing, psychology, matrices, and statistics.
Author | : Lowell W. Beineke |
Publisher | : Cambridge University Press |
Total Pages | : 400 |
Release | : 2021-06-03 |
Genre | : Mathematics |
ISBN | : 1108671071 |
Algorithmic graph theory has been expanding at an extremely rapid rate since the middle of the twentieth century, in parallel with the growth of computer science and the accompanying utilization of computers, where efficient algorithms have been a prime goal. This book presents material on developments on graph algorithms and related concepts that will be of value to both mathematicians and computer scientists, at a level suitable for graduate students, researchers and instructors. The fifteen expository chapters, written by acknowledged international experts on their subjects, focus on the application of algorithms to solve particular problems. All chapters were carefully edited to enhance readability and standardize the chapter structure as well as the terminology and notation. The editors provide basic background material in graph theory, and a chapter written by the book's Academic Consultant, Martin Charles Golumbic (University of Haifa, Israel), provides background material on algorithms as connected with graph theory.
Author | : Lowell W. Beineke |
Publisher | : Cambridge University Press |
Total Pages | : 387 |
Release | : 2009-07-09 |
Genre | : Mathematics |
ISBN | : 1139643681 |
The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.
Author | : John N. Mordeson |
Publisher | : Springer |
Total Pages | : 220 |
Release | : 2018-12-13 |
Genre | : Technology & Engineering |
ISBN | : 3030042154 |
This book builds on two recently published books by the same authors on fuzzy graph theory. Continuing in their tradition, it provides readers with an extensive set of tools for applying fuzzy mathematics and graph theory to social problems such as human trafficking and illegal immigration. Further, it especially focuses on advanced concepts such as connectivity and Wiener indices in fuzzy graphs, distance, operations on fuzzy graphs involving t-norms, and the application of dialectic synthesis in fuzzy graph theory. Each chapter also discusses a number of key, representative applications. Given its approach, the book provides readers with an authoritative, self-contained guide to – and at the same time an inspiring read on – the theory and modern applications of fuzzy graphs. For newcomers, the book also includes a brief introduction to fuzzy sets, fuzzy relations and fuzzy graphs.
Author | : Ronald C. Read |
Publisher | : Academic Press |
Total Pages | : 344 |
Release | : 2014-05-12 |
Genre | : Mathematics |
ISBN | : 1483263126 |
Graph Theory and Computing focuses on the processes, methodologies, problems, and approaches involved in graph theory and computer science. The book first elaborates on alternating chain methods, average height of planted plane trees, and numbering of a graph. Discussions focus on numbered graphs and difference sets, Euclidean models and complete graphs, classes and conditions for graceful graphs, and maximum matching problem. The manuscript then elaborates on the evolution of the path number of a graph, production of graphs by computer, and graph-theoretic programming language. Topics include FORTRAN characteristics of GTPL, design considerations, representation and identification of graphs in a computer, production of simple graphs and star topologies, and production of stars having a given topology. The manuscript examines the entropy of transformed finite-state automata and associated languages; counting hexagonal and triangular polyominoes; and symmetry of cubical and general polyominoes. Graph coloring algorithms, algebraic isomorphism invariants for graphs of automata, and coding of various kinds of unlabeled trees are also discussed. The publication is a valuable source of information for researchers interested in graph theory and computing.
Author | : Vadim Zverovich |
Publisher | : Cambridge Scholars Publishing |
Total Pages | : 309 |
Release | : 2019-06-24 |
Genre | : Mathematics |
ISBN | : 1527536289 |
This book considers a number of research topics in graph theory and its applications, including ideas devoted to alpha-discrepancy, strongly perfect graphs, reconstruction conjectures, graph invariants, hereditary classes of graphs, and embedding graphs on topological surfaces. It also discusses applications of graph theory, such as transport networks and hazard assessments based on unified networks. The book is ideal for developers of grant proposals and researchers interested in exploring new areas of graph theory and its applications.
Author | : Gary Chartrand |
Publisher | : CRC Press |
Total Pages | : 503 |
Release | : 2019-11-28 |
Genre | : Mathematics |
ISBN | : 0429798288 |
With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition
Author | : Hian Poh Yap |
Publisher | : Cambridge University Press |
Total Pages | : 241 |
Release | : 1986-07-17 |
Genre | : Mathematics |
ISBN | : 0521339448 |
This book provides a rapid introduction to topics in graph theory typically covered in a graduate course. The author sets out the main recent results in several areas of current research in graph theory. Topics covered include edge-colourings, symmetries of graphs, packing of graphs, and computational complexity. Professor Yap is able to lead the reader to the forefront of research and to describe some of the open problems in the field. The choice of material presented has arisen from courses given at the National University of Singapore and each chapter contains numerous examples and exercises for the reader.
Author | : Sunil Mathew |
Publisher | : Springer |
Total Pages | : 331 |
Release | : 2017-12-30 |
Genre | : Technology & Engineering |
ISBN | : 3319714074 |
This book provides a timely overview of fuzzy graph theory, laying the foundation for future applications in a broad range of areas. It introduces readers to fundamental theories, such as Craine’s work on fuzzy interval graphs, fuzzy analogs of Marczewski’s theorem, and the Gilmore and Hoffman characterization. It also introduces them to the Fulkerson and Gross characterization and Menger’s theorem, the applications of which will be discussed in a forthcoming book by the same authors. This book also discusses in detail important concepts such as connectivity, distance and saturation in fuzzy graphs. Thanks to the good balance between the basics of fuzzy graph theory and new findings obtained by the authors, the book offers an excellent reference guide for advanced undergraduate and graduate students in mathematics, engineering and computer science, and an inspiring read for all researchers interested in new developments in fuzzy logic and applied mathematics.