Topics from One-Dimensional Dynamics

Topics from One-Dimensional Dynamics
Author: Karen M. Brucks
Publisher: Cambridge University Press
Total Pages: 316
Release: 2004-06-28
Genre: Mathematics
ISBN: 9780521547666

One-dimensional dynamics owns many deep results and avenues of active mathematical research. Numerous inroads to this research exist for the advanced undergraduate or beginning graduate student. This book provides glimpses into one-dimensional dynamics with the hope that the results presented illuminate the beauty and excitement of the field. Much of this material is covered nowhere else in textbook format, some are mini new research topics in themselves, and novel connections are drawn with other research areas both inside and outside the text. The material presented here is not meant to be approached in a linear fashion. Readers are encouraged to pick and choose favourite topics. Anyone with an interest in dynamics, novice or expert alike, will find much of interest within.

Topics from One-Dimensional Dynamics

Topics from One-Dimensional Dynamics
Author: Karen M. Brucks
Publisher: Cambridge University Press
Total Pages: 312
Release: 2004-07-12
Genre: Mathematics
ISBN: 9780521838962

One-dimensional dynamics has generated many results, and avenues of active mathematical research with numerous inroads to this research remain to be pursued by the advanced undergraduate or beginning graduate student. While much of the material in this book is not covered elsewhere, some aspects present new research topics whose connections are drawn to other research areas from the text. Although the material presented is not meant to be approached in a linear fashion, anybody with an interest in dynamics will find many topics of interest.

One-Dimensional Dynamics

One-Dimensional Dynamics
Author: Welington de Melo
Publisher: Springer Science & Business Media
Total Pages: 616
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642780431

One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).

Dynamics of One-Dimensional Maps

Dynamics of One-Dimensional Maps
Author: A.N. Sharkovsky
Publisher: Springer Science & Business Media
Total Pages: 268
Release: 2013-06-29
Genre: Mathematics
ISBN: 940158897X

maps whose topological entropy is equal to zero (i.e., maps that have only cyeles of pe 2 riods 1,2,2 , ... ) are studied in detail and elassified. Various topological aspects of the dynamics of unimodal maps are studied in Chap ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of existence of wandering intervals. In Chapter 6, for a broad elass of maps, we prove that almost all points (with respect to the Lebesgue measure) are attracted by the same sink. Our attention is mainly focused on the problem of existence of an invariant measure absolutely continuous with respect to the Lebesgue measure. We also study the problem of Lyapunov stability of dynamical systems and determine the measures of repelling and attracting invariant sets. The problem of stability of separate trajectories under perturbations of maps and the problem of structural stability of dynamical systems as a whole are discussed in Chap ter 7. In Chapter 8, we study one-parameter families of maps. We analyze bifurcations of periodic trajectories and properties of the set of bifurcation values of the parameter, in eluding universal properties such as Feigenbaum universality.

An Introduction To Chaotic Dynamical Systems

An Introduction To Chaotic Dynamical Systems
Author: Robert Devaney
Publisher: CRC Press
Total Pages: 280
Release: 2018-03-09
Genre: Mathematics
ISBN: 0429981937

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Introduction to Dynamical Systems

Introduction to Dynamical Systems
Author: Michael Brin
Publisher: Cambridge University Press
Total Pages: 0
Release: 2015-11-05
Genre: Mathematics
ISBN: 9781107538948

This book provides a broad introduction to the subject of dynamical systems, suitable for a one or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to areas such as number theory, data storage, and internet search engines.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
Total Pages: 615
Release: 2022-05-05
Genre: Computers
ISBN: 1009098489

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Introduction to the Modern Theory of Dynamical Systems

Introduction to the Modern Theory of Dynamical Systems
Author: Anatole Katok
Publisher: Cambridge University Press
Total Pages: 828
Release: 1995
Genre: Mathematics
ISBN: 9780521575577

This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.

Chaotic Dynamics

Chaotic Dynamics
Author: Geoffrey R. Goodson
Publisher: Cambridge University Press
Total Pages: 419
Release: 2017
Genre: Mathematics
ISBN: 1107112672

This rigorous undergraduate introduction to dynamical systems is an accessible guide for mathematics students advancing from calculus.

Dynamical Systems

Dynamical Systems
Author: Luis Barreira
Publisher: Springer Science & Business Media
Total Pages: 214
Release: 2012-12-02
Genre: Mathematics
ISBN: 1447148355

The theory of dynamical systems is a broad and active research subject with connections to most parts of mathematics. Dynamical Systems: An Introduction undertakes the difficult task to provide a self-contained and compact introduction. Topics covered include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as a brief introduction to ergodic theory. In particular, the authors consider topological recurrence, topological entropy, homeomorphisms and diffeomorphisms of the circle, Sharkovski's ordering, the Poincaré-Bendixson theory, and the construction of stable manifolds, as well as an introduction to geodesic flows and the study of hyperbolicity (the latter is often absent in a first introduction). Moreover, the authors introduce the basics of symbolic dynamics, the construction of symbolic codings, invariant measures, Poincaré's recurrence theorem and Birkhoff's ergodic theorem. The exposition is mathematically rigorous, concise and direct: all statements (except for some results from other areas) are proven. At the same time, the text illustrates the theory with many examples and 140 exercises of variable levels of difficulty. The only prerequisites are a background in linear algebra, analysis and elementary topology. This is a textbook primarily designed for a one-semester or two-semesters course at the advanced undergraduate or beginning graduate levels. It can also be used for self-study and as a starting point for more advanced topics.