Tool Kit For Groupoid C Algebras
Download Tool Kit For Groupoid C Algebras full books in PDF, epub, and Kindle. Read online free Tool Kit For Groupoid C Algebras ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Dana P. Williams |
Publisher | : American Mathematical Soc. |
Total Pages | : 417 |
Release | : 2019-09-24 |
Genre | : Mathematics |
ISBN | : 1470451336 |
The construction of a C∗-algebra from a locally compact groupoid is an important generalization of the group C∗-algebra construction and of the transformation group C∗-algebra construction. Since their introduction in 1980, groupoid C∗-algebras have been intensively studied with diverse applications, including graph algebras, classification theory, variations on the Baum-Connes conjecture, and noncommutative geometry. This book provides a detailed introduction to this vast subject and is suitable for graduate students or any researcher who wants to use groupoid C∗-algebras in their work. The main focus is to equip the reader with modern versions of the basic technical tools used in the subject, which will allow the reader to understand fundamental results and make contributions to various areas in the subject. Thus, in addition to covering the basic properties and construction of groupoid C∗-algebras, the focus is to give a modern treatment of some of the major developments in the subject in recent years, including the Equivalence Theorem and the Disintegration Theorem. Also covered are the complicated subjects of amenability of groupoids and simplicity results. The book is reasonably self-contained and accessible to graduate students with a good background in operator algebras.
Author | : Ralph S. Freese |
Publisher | : American Mathematical Society |
Total Pages | : 496 |
Release | : 2022-10-28 |
Genre | : Mathematics |
ISBN | : 1470467976 |
This book is the second of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.
Author | : Paul B. Larson |
Publisher | : American Mathematical Soc. |
Total Pages | : 345 |
Release | : 2020-07-16 |
Genre | : Education |
ISBN | : 1470454629 |
This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo–Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.
Author | : Gennadiy Feldman |
Publisher | : American Mathematical Society |
Total Pages | : 253 |
Release | : 2023-04-07 |
Genre | : Mathematics |
ISBN | : 1470472953 |
It is well known that if two independent identically distributed random variables are Gaussian, then their sum and difference are also independent. It turns out that only Gaussian random variables have such property. This statement, known as the famous Kac-Bernstein theorem, is a typical example of a so-called characterization theorem. Characterization theorems in mathematical statistics are statements in which the description of possible distributions of random variables follows from properties of some functions of these random variables. The first results in this area are associated with famous 20th century mathematicians such as G. Pólya, M. Kac, S. N. Bernstein, and Yu. V. Linnik. By now, the corresponding theory on the real line has basically been constructed. The problem of extending the classical characterization theorems to various algebraic structures has been actively studied in recent decades. The purpose of this book is to provide a comprehensive and self-contained overview of the current state of the theory of characterization problems on locally compact Abelian groups. The book will be useful to everyone with some familiarity of abstract harmonic analysis who is interested in probability distributions and functional equations on groups.
Author | : Nabil H. Mustafa |
Publisher | : American Mathematical Society |
Total Pages | : 251 |
Release | : 2022-01-14 |
Genre | : Mathematics |
ISBN | : 1470461560 |
Understanding the behavior of basic sampling techniques and intrinsic geometric attributes of data is an invaluable skill that is in high demand for both graduate students and researchers in mathematics, machine learning, and theoretical computer science. The last ten years have seen significant progress in this area, with many open problems having been resolved during this time. These include optimal lower bounds for epsilon-nets for many geometric set systems, the use of shallow-cell complexity to unify proofs, simpler and more efficient algorithms, and the use of epsilon-approximations for construction of coresets, to name a few. This book presents a thorough treatment of these probabilistic, combinatorial, and geometric methods, as well as their combinatorial and algorithmic applications. It also revisits classical results, but with new and more elegant proofs. While mathematical maturity will certainly help in appreciating the ideas presented here, only a basic familiarity with discrete mathematics, probability, and combinatorics is required to understand the material.
Author | : Lindsay N. Childs |
Publisher | : American Mathematical Soc. |
Total Pages | : 311 |
Release | : 2021-11-10 |
Genre | : Education |
ISBN | : 1470465167 |
Hopf algebras have been shown to play a natural role in studying questions of integral module structure in extensions of local or global fields. This book surveys the state of the art in Hopf-Galois theory and Hopf-Galois module theory and can be viewed as a sequel to the first author's book, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, which was published in 2000. The book is divided into two parts. Part I is more algebraic and focuses on Hopf-Galois structures on Galois field extensions, as well as the connection between this topic and the theory of skew braces. Part II is more number theoretical and studies the application of Hopf algebras to questions of integral module structure in extensions of local or global fields. Graduate students and researchers with a general background in graduate-level algebra, algebraic number theory, and some familiarity with Hopf algebras will appreciate the overview of the current state of this exciting area and the suggestions for numerous avenues for further research and investigation.
Author | : J. Scott Carter |
Publisher | : American Mathematical Society |
Total Pages | : 365 |
Release | : 2021-12-15 |
Genre | : Mathematics |
ISBN | : 1470466716 |
This book is an introduction to techniques and results in diagrammatic algebra. It starts with abstract tensors and their categorifications, presents diagrammatic methods for studying Frobenius and Hopf algebras, and discusses their relations with topological quantum field theory and knot theory. The text is replete with figures, diagrams, and suggestive typography that allows the reader a glimpse into many higher dimensional processes. The penultimate chapter summarizes the previous material by demonstrating how to braid 3- and 4- dimensional manifolds into 5- and 6-dimensional spaces. The book is accessible to post-qualifier graduate students, and will also be of interest to algebraists, topologists and algebraic topologists who would like to incorporate diagrammatic techniques into their research.
Author | : Leslie Hogben |
Publisher | : American Mathematical Society |
Total Pages | : 302 |
Release | : 2022-07-21 |
Genre | : Mathematics |
ISBN | : 1470466554 |
This book provides an introduction to the inverse eigenvalue problem for graphs (IEP-$G$) and the related area of zero forcing, propagation, and throttling. The IEP-$G$ grew from the intersection of linear algebra and combinatorics and has given rise to both a rich set of deep problems in that area as well as a breadth of “ancillary” problems in related areas. The IEP-$G$ asks a fundamental mathematical question expressed in terms of linear algebra and graph theory, but the significance of such questions goes beyond these two areas, as particular instances of the IEP-$G$ also appear as major research problems in other fields of mathematics, sciences and engineering. One approach to the IEP-$G$ is through rank minimization, a relevant problem in itself and with a large number of applications. During the past 10 years, important developments on the rank minimization problem, particularly in relation to zero forcing, have led to significant advances in the IEP-$G$. The monograph serves as an entry point and valuable resource that will stimulate future developments in this active and mathematically diverse research area.
Author | : Kate Juschenko |
Publisher | : American Mathematical Society |
Total Pages | : 180 |
Release | : 2022-06-30 |
Genre | : Mathematics |
ISBN | : 1470470322 |
The main topic of the book is amenable groups, i.e., groups on which there exist invariant finitely additive measures. It was discovered that the existence or non-existence of amenability is responsible for many interesting phenomena such as, e.g., the Banach-Tarski Paradox about breaking a sphere into two spheres of the same radius. Since then, amenability has been actively studied and a number of different approaches resulted in many examples of amenable and non-amenable groups. In the book, the author puts together main approaches to study amenability. A novel feature of the book is that the exposition of the material starts with examples which introduce a method rather than illustrating it. This allows the reader to quickly move on to meaningful material without learning and remembering a lot of additional definitions and preparatory results; those are presented after analyzing the main examples. The techniques that are used for proving amenability in this book are mainly a combination of analytic and probabilistic tools with geometric group theory.
Author | : Julie Déserti |
Publisher | : American Mathematical Soc. |
Total Pages | : 187 |
Release | : 2021-04-13 |
Genre | : Education |
ISBN | : 1470460122 |
The goal of this book is to present a portrait of the n n-dimensional Cremona group with an emphasis on the 2-dimensional case. After recalling some crucial tools, the book describes a naturally defined infinite dimensional hyperbolic space on which the Cremona group acts. This space plays a fundamental role in the study of Cremona groups, as it allows one to apply tools from geometric group theory to explore properties of the subgroups of the Cremona group as well as the degree growth and dynamical behavior of birational transformations. The book describes natural topologies on the Cremona group, codifies the notion of algebraic subgroups of the Cremona groups and finishes with a chapter on the dynamics of their actions. This book is aimed at graduate students and researchers in algebraic geometry who are interested in birational geometry and its interactions with geometric group theory and dynamical systems.