Time Series Modelling of Water Resources and Environmental Systems

Time Series Modelling of Water Resources and Environmental Systems
Author: K.W. Hipel
Publisher: Elsevier
Total Pages: 1053
Release: 1994-04-07
Genre: Technology & Engineering
ISBN: 0080870368

This is a comprehensive presentation of the theory and practice of time series modelling of environmental systems. A variety of time series models are explained and illustrated, including ARMA (autoregressive-moving average), nonstationary, long memory, three families of seasonal, multiple input-single output, intervention and multivariate ARMA models. Other topics in environmetrics covered in this book include time series analysis in decision making, estimating missing observations, simulation, the Hurst phenomenon, forecasting experiments and causality. Professionals working in fields overlapping with environmetrics - such as water resources engineers, environmental scientists, hydrologists, geophysicists, geographers, earth scientists and planners - will find this book a valuable resource. Equally, environmetrics, systems scientists, economists, mechanical engineers, chemical engineers, and management scientists will find the time series methods presented in this book useful.

Hydrologic Time Series Analysis

Hydrologic Time Series Analysis
Author: Deepesh Machiwal
Publisher: Springer Science & Business Media
Total Pages: 316
Release: 2012-03-05
Genre: Science
ISBN: 9400718616

There is a dearth of relevant books dealing with both theory and application of time series analysis techniques, particularly in the field of water resources engineering. Therefore, many hydrologists and hydrogeologists face difficulties in adopting time series analysis as one of the tools for their research. This book fills this gap by providing a proper blend of theoretical and practical aspects of time sereies analysis. It deals with a comprehensive overview of time series characteristics in hydrology/water resources engineering, various tools and techniques for analyzing time series data, theoretical details of 31 available statistical tests along with detailed procedures for applying them to real-world time series data, theory and methodology of stochastic modelling, and current status of time series analysis in hydrological sciences. In adition, it demonstrates the application of most time series tests through a case study as well as presents a comparative performance evaluation of various time series tests, together with four invited case studies from India and abroad. This book will not only serve as a textbook for the students and teachers in water resources engineering but will also serve as the most comprehensive reference to educate researchers/scientists about the theory and practice of time series analysis in hydrological sciences. This book will be very useful to the students, researchers, teachers and professionals involved in water resources, hydrology, ecology, climate change, earth science, and environmental studies.

Statistical Methods in Water Resources

Statistical Methods in Water Resources
Author: D.R. Helsel
Publisher: Elsevier
Total Pages: 539
Release: 1993-03-03
Genre: Science
ISBN: 0080875084

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.

Applied Modeling Techniques and Data Analysis 1

Applied Modeling Techniques and Data Analysis 1
Author: Yiannis Dimotikalis
Publisher: John Wiley & Sons
Total Pages: 306
Release: 2021-05-11
Genre: Business & Economics
ISBN: 1786306735

BIG DATA, ARTIFICIAL INTELLIGENCE AND DATA ANALYSIS SET Coordinated by Jacques Janssen Data analysis is a scientific field that continues to grow enormously, most notably over the last few decades, following rapid growth within the tech industry, as well as the wide applicability of computational techniques alongside new advances in analytic tools. Modeling enables data analysts to identify relationships, make predictions, and to understand, interpret and visualize the extracted information more strategically. This book includes the most recent advances on this topic, meeting increasing demand from wide circles of the scientific community. Applied Modeling Techniques and Data Analysis 1 is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians, working on the front end of data analysis and modeling applications. The chapters cover a cross section of current concerns and research interests in the above scientific areas. The collected material is divided into appropriate sections to provide the reader with both theoretical and applied information on data analysis methods, models and techniques, along with appropriate applications.

Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering

Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering
Author: Shahab Araghinejad
Publisher: Springer Science & Business Media
Total Pages: 299
Release: 2013-11-26
Genre: Science
ISBN: 9400775067

“Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering” provides a systematic account of major concepts and methodologies for data-driven models and presents a unified framework that makes the subject more accessible to and applicable for researchers and practitioners. It integrates important theories and applications of data-driven models and uses them to deal with a wide range of problems in the field of water resources and environmental engineering such as hydrological forecasting, flood analysis, water quality monitoring, regionalizing climatic data, and general function approximation. The book presents the statistical-based models including basic statistical analysis, nonparametric and logistic regression methods, time series analysis and modeling, and support vector machines. It also deals with the analysis and modeling based on artificial intelligence techniques including static and dynamic neural networks, statistical neural networks, fuzzy inference systems, and fuzzy regression. The book also discusses hybrid models as well as multi-model data fusion to wrap up the covered models and techniques. The source files of relatively simple and advanced programs demonstrating how to use the models are presented together with practical advice on how to best apply them. The programs, which have been developed using the MATLAB® unified platform, can be found on extras.springer.com. The main audience of this book includes graduate students in water resources engineering, environmental engineering, agricultural engineering, and natural resources engineering. This book may be adapted for use as a senior undergraduate and graduate textbook by focusing on selected topics. Alternatively, it may also be used as a valuable resource book for practicing engineers, consulting engineers, scientists and others involved in water resources and environmental engineering.

Water Resources Systems Analysis

Water Resources Systems Analysis
Author: Mohammad Karamouz
Publisher: CRC Press
Total Pages: 608
Release: 2003-06-27
Genre: Science
ISBN: 0203499433

Focusing on conflict resolution, Water Resources Systems Analysis discusses systematic approaches to the mathematical modeling of various water resources issues, which helps decision-makers allocate water effectively and efficiently. Readers will gain an understanding of simulation, optimization, multi-criterion-decision-making, as well as engineer

Stochastic Hydrology and its Use in Water Resources Systems Simulation and Optimization

Stochastic Hydrology and its Use in Water Resources Systems Simulation and Optimization
Author: J.B. Marco
Publisher: Springer Science & Business Media
Total Pages: 470
Release: 2012-12-06
Genre: Science
ISBN: 9401116970

Stochastic hydrology is an essential base of water resources systems analysis, due to the inherent randomness of the input, and consequently of the results. These results have to be incorporated in a decision-making process regarding the planning and management of water systems. It is through this application that stochastic hydrology finds its true meaning, otherwise it becomes merely an academic exercise. A set of well known specialists from both stochastic hydrology and water resources systems present a synthesis of the actual knowledge currently used in real-world planning and management. The book is intended for both practitioners and researchers who are willing to apply advanced approaches for incorporating hydrological randomness and uncertainty into the simulation and optimization of water resources systems. (abstract) Stochastic hydrology is a basic tool for water resources systems analysis, due to inherent randomness of the hydrologic cycle. This book contains actual techniques in use for water resources planning and management, incorporating randomness into the decision making process. Optimization and simulation, the classical systems-analysis technologies, are revisited under up-to-date statistical hydrology findings backed by real world applications.