Time Series Analysis For The Social Sciences
Download Time Series Analysis For The Social Sciences full books in PDF, epub, and Kindle. Read online free Time Series Analysis For The Social Sciences ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Janet M. Box-Steffensmeier |
Publisher | : Cambridge University Press |
Total Pages | : 297 |
Release | : 2014-12-22 |
Genre | : Political Science |
ISBN | : 1316060500 |
Time series, or longitudinal, data are ubiquitous in the social sciences. Unfortunately, analysts often treat the time series properties of their data as a nuisance rather than a substantively meaningful dynamic process to be modeled and interpreted. Time Series Analysis for the Social Sciences provides accessible, up-to-date instruction and examples of the core methods in time series econometrics. Janet M. Box-Steffensmeier, John R. Freeman, Jon C. Pevehouse and Matthew P. Hitt cover a wide range of topics including ARIMA models, time series regression, unit-root diagnosis, vector autoregressive models, error-correction models, intervention models, fractional integration, ARCH models, structural breaks, and forecasting. This book is aimed at researchers and graduate students who have taken at least one course in multivariate regression. Examples are drawn from several areas of social science, including political behavior, elections, international conflict, criminology, and comparative political economy.
Author | : Youseop Shin |
Publisher | : Univ of California Press |
Total Pages | : 244 |
Release | : 2017-02-07 |
Genre | : Law |
ISBN | : 0520293169 |
"This book focuses on fundamental elements of time-series analysis that social scientists need to understand to employ time-series analysis for their research and practice. Avoiding extraordinary mathematical materials, this book explains univariate time-series analysis step-by-step, from the preliminary visual analysis through the modeling of seasonality, trends, and residuals to the prediction and the evaluation of estimated models. Then, this book explains smoothing, multiple time-series analysis, and interrupted time-series analysis. At the end of each step, this book coherently provides an analysis of the monthly violent-crime rates as an example."--Provided by publisher.
Author | : Richard McCleary |
Publisher | : |
Total Pages | : 331 |
Release | : 1982 |
Genre | : |
ISBN | : |
Author | : David McDowall |
Publisher | : |
Total Pages | : 201 |
Release | : 2019 |
Genre | : Business & Economics |
ISBN | : 0190943947 |
Interrupted Time Series Analysis develops a comprehensive set of models and methods for drawing causal inferences from time series. It provides example analyses of social, behavioral, and biomedical time series to illustrate a general strategy for building AutoRegressive Integrated Moving Average (ARIMA) impact models. Additionally, the book supplements the classic Box-Jenkins-Tiao model-building strategy with recent auxiliary tests for transformation, differencing, and model selection. Not only does the text discuss new developments, including the prospects for widespread adoption of Bayesian hypothesis testing and synthetic control group designs, but it makes optimal use of graphical illustrations in its examples. With forty completed example analyses that demonstrate the implications of model properties, Interrupted Time Series Analysis will be a key inter-disciplinary text in classrooms, workshops, and short-courses for researchers familiar with time series data or cross-sectional regression analysis but limited background in the structure of time series processes and experiments.
Author | : Mark Pickup |
Publisher | : SAGE Publications |
Total Pages | : 233 |
Release | : 2014-10-15 |
Genre | : Social Science |
ISBN | : 1483313115 |
Introducing time series methods and their application in social science research, this practical guide to time series models is the first in the field written for a non-econometrics audience. Giving readers the tools they need to apply models to their own research, Introduction to Time Series Analysis, by Mark Pickup, demonstrates the use of—and the assumptions underlying—common models of time series data including finite distributed lag; autoregressive distributed lag; moving average; differenced data; and GARCH, ARMA, ARIMA, and error correction models. “This volume does an excellent job of introducing modern time series analysis to social scientists who are already familiar with basic statistics and the general linear model.” —William G. Jacoby, Michigan State University
Author | : Rebecca M. Warner |
Publisher | : Guilford Press |
Total Pages | : 244 |
Release | : 1998-05-22 |
Genre | : Social Science |
ISBN | : 9781572303386 |
This book provides a thorough introduction to methods for detecting and describing cyclic patterns in time-series data. It is written both for researchers and students new to the area and for those who have already collected time-series data but wish to learn new ways of understanding and presenting them. Facilitating the interpretation of observations of behavior, physiology, mood, perceptual threshold, social indicator variables, and other responses, the book focuses on practical applications and requires much less mathematical background than most comparable texts. Using real data sets and currently available software (SPSS for Windows), the author employs extensive examples to clarify key concepts. Topics covered include research design issues, preliminary data screening, identification and description of cycles, summary of results across time series, and assessment of relations between time series. Also considered are theoretical questions, problems of interpretation, and potential sources of artifact.
Author | : Benjamin Cornwell |
Publisher | : Cambridge University Press |
Total Pages | : 339 |
Release | : 2015-08-06 |
Genre | : Social Science |
ISBN | : 1316368866 |
Social sequence analysis includes a diverse and rapidly growing body of methods that social scientists have developed to help study complex ordered social processes, including chains of transitions, trajectories and other ordered phenomena. Social sequence analysis is not limited by content or time scale and can be used in many different fields, including sociology, communication, information science and psychology. Social Sequence Analysis aims to bring together both foundational and recent theoretical and methodological work on social sequences from the last thirty years. A unique reference book for a new generation of social scientists, this book will aid demographers who study life-course trajectories and family histories, sociologists who study career paths or work/family schedules, communication scholars and micro-sociologists who study conversation, interaction structures and small-group dynamics, as well as social epidemiologists.
Author | : Nina Golyandina |
Publisher | : CRC Press |
Total Pages | : 322 |
Release | : 2001-01-23 |
Genre | : Mathematics |
ISBN | : 9781420035841 |
Over the last 15 years, singular spectrum analysis (SSA) has proven very successful. It has already become a standard tool in climatic and meteorological time series analysis and well known in nonlinear physics and signal processing. However, despite the promise it holds for time series applications in other disciplines, SSA is not widely known among statisticians and econometrists, and although the basic SSA algorithm looks simple, understanding what it does and where its pitfalls lay is by no means simple. Analysis of Time Series Structure: SSA and Related Techniques provides a careful, lucid description of its general theory and methodology. Part I introduces the basic concepts, and sets forth the main findings and results, then presents a detailed treatment of the methodology. After introducing the basic SSA algorithm, the authors explore forecasting and apply SSA ideas to change-point detection algorithms. Part II is devoted to the theory of SSA. Here the authors formulate and prove the statements of Part I. They address the singular value decomposition (SVD) of real matrices, time series of finite rank, and SVD of trajectory matrices. Based on the authors' original work and filled with applications illustrated with real data sets, this book offers an outstanding opportunity to obtain a working knowledge of why, when, and how SSA works. It builds a strong foundation for successfully using the technique in applications ranging from mathematics and nonlinear physics to economics, biology, oceanology, social science, engineering, financial econometrics, and market research.
Author | : Richard McCleary |
Publisher | : Oxford University Press |
Total Pages | : 393 |
Release | : 2017 |
Genre | : Business & Economics |
ISBN | : 0190661569 |
Design and Analysis of Time Series Experiments develops methods and models for analysis and interpretation of time series experiments while also addressing recent developments in causal modeling. Unlike other time series texts, it integrates the statistical issues of design, estimation, and interpretation with foundational validity issues. Drawing on examples from criminology, economics, education, pharmacology, public policy, program evaluation, public health, and psychology, this text addresses researchers and graduate students in a wide range of the behavioral, biomedical, and social sciences.
Author | : Patrick T. Brandt |
Publisher | : SAGE |
Total Pages | : 121 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 1412906563 |
Many analyses of time series data involve multiple, related variables. Modeling Multiple Time Series presents many specification choices and special challenges. This book reviews the main competing approaches to modeling multiple time series: simultaneous equations, ARIMA, error correction models, and vector autoregression. The text focuses on vector autoregression (VAR) models as a generalization of the other approaches mentioned. Specification, estimation, and inference using these models is discussed. The authors also review arguments for and against using multi-equation time series models. Two complete, worked examples show how VAR models can be employed. An appendix discusses software that can be used for multiple time series models and software code for replicating the examples is available. Key Features: * Offers a detailed comparison of different time series methods and approaches. * Includes a self-contained introduction to vector autoregression modeling. * Situates multiple time series modeling as a natural extension of commonly taught statistical models.