Representations and Techniques for 3D Object Recognition and Scene Interpretation

Representations and Techniques for 3D Object Recognition and Scene Interpretation
Author: Derek Hoiem
Publisher: Morgan & Claypool Publishers
Total Pages: 172
Release: 2011
Genre: Computers
ISBN: 1608457281

One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions

Geometric Invariance in Computer Vision

Geometric Invariance in Computer Vision
Author: Joseph L. Mundy
Publisher:
Total Pages: 568
Release: 1992
Genre: Computers
ISBN:

These twenty-three contributions focus on the most recent developments in the rapidly evolving field of geometric invariants and their application to computer vision. The introduction summarizes the basics of invariant theory, discusses how invariants are related to problems in computer vision, and looks at the future possibilities, particularly the notion that invariant analysis might provide a solution to the elusive problem of recognizing general curved 3D objects from an arbitrary viewpoint. The remaining chapters consist of original papers that present important developments as well as tutorial articles that provide useful background material. These chapters are grouped into categories covering algebraic invariants, nonalgebraic invariants, invariants of multiple views, and applications. An appendix provides an extensive introduction to projective geometry and its applications to basic problems in computer vision.

The Neuropsychology of High-level Vision

The Neuropsychology of High-level Vision
Author: Martha J. Farah
Publisher: Psychology Press
Total Pages: 386
Release: 2013-04-15
Genre: Psychology
ISBN: 1135806527

This book provides a state-of-the-art review of high-level vision and the brain. Topics covered include object representation and recognition, category-specific visual knowledge, perceptual processes in reading, top-down processes in vision -- including attention and mental imagery -- and the relations between vision and conscious awareness. Each chapter includes a tutorial overview emphasizing the current state of knowledge and outstanding theoretical issues in the authors' area of research, along with a more in-depth report of an illustrative research project in the same area. The editors and contributors to this volume are among the most respected figures in the field of neuropsychology and perception, making the work presented here a standard-setting text and reference in that area.

Representations and Techniques for 3D Object Recognition and Scene Interpretation

Representations and Techniques for 3D Object Recognition and Scene Interpretation
Author: Derek Santhanam
Publisher: Springer Nature
Total Pages: 147
Release: 2022-05-31
Genre: Computers
ISBN: 3031015576

One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions

Advances in Pattern Recognition

Advances in Pattern Recognition
Author: Francesc J. Ferri
Publisher: Springer
Total Pages: 918
Release: 2003-06-26
Genre: Computers
ISBN: 3540445226

This book constitutes the joint refereed proceedings of the 8th International Workshop on Structural and Syntactic Pattern Recognition and the 3rd International Workshop on Statistical Techniques in Pattern Recognition, SSPR 2000 and SPR 2000, held in Alicante, Spain in August/September 2000. The 52 revised full papers presented together with five invited papers and 35 posters were carefully reviewed and selected from a total of 130 submissions. The book offers topical sections on hybrid and combined methods, document image analysis, grammar and language methods, structural matching, graph-based methods, shape analysis, clustering and density estimation, object recognition, general methodology, and feature extraction and selection.

A Guide for Machine Vision in Quality Control

A Guide for Machine Vision in Quality Control
Author: Sheila Anand
Publisher: CRC Press
Total Pages: 205
Release: 2019-12-23
Genre: Computers
ISBN: 100075409X

Machine Vision systems combine image processing with industrial automation. One of the primary areas of application of Machine Vision in the Industry is in the area of Quality Control. Machine vision provides fast, economic and reliable inspection that improves quality as well as business productivity. Building machine vision applications is a challenging task as each application is unique, with its own requirements and desired outcome. A Guide to Machine Vision in Quality Control follows a practitioner’s approach to learning machine vision. The book provides guidance on how to build machine vision systems for quality inspections. Practical applications from the Industry have been discussed to provide a good understanding of usage of machine vision for quality control. Real-world case studies have been used to explain the process of building machine vision solutions. The book offers comprehensive coverage of the essential topics, that includes: Introduction to Machine Vision Fundamentals of Digital Images Discussion of various machine vision system components Digital image processing related to quality control Overview of automation The book can be used by students and academics, as well as by industry professionals, to understand the fundamentals of machine vision. Updates to the on-going technological innovations have been provided with a discussion on emerging trends in machine vision and smart factories of the future. Sheila Anand is a PhD graduate and Professor at Rajalakshmi Engineering College, Chennai, India. She has over three decades of experience in teaching, consultancy and research. She has worked in the software industry and has extensive experience in development of software applications and in systems audit of financial, manufacturing and trading organizations. She guides Ph.D. aspirants and many of her research scholars have since been awarded their doctoral degree. She has published many papers in national and international journals and is a reviewer for several journals of repute. L Priya is a PhD graduate working as Associate Professor and Head, Department of Information Technology at Rajalakshmi Engineering College, Chennai, India. She has nearly two decades of teaching experience and good exposure to consultancy and research. She has delivered many invited talks, presented papers and won several paper awards in International Conferences. She has published several papers in International journals and is a reviewer for SCI indexed journals. Her areas of interest include Machine Vision, Wireless Communication and Machine Learning.

Pattern Recognition and Computer Vision

Pattern Recognition and Computer Vision
Author: Yuxin Peng
Publisher: Springer Nature
Total Pages: 789
Release: 2020-10-11
Genre: Computers
ISBN: 3030606333

The three-volume set LNCS 12305, 12306, and 12307 constitutes the refereed proceedings of the Third Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2020, held virtually in Nanjing, China, in October 2020. The 158 full papers presented were carefully reviewed and selected from 402 submissions. The papers have been organized in the following topical sections: Part I: Computer Vision and Application, Part II: Pattern Recognition and Application, Part III: Machine Learning.

Image Analysis and Recognition

Image Analysis and Recognition
Author: Aurélio Campilho
Publisher: Springer Science & Business Media
Total Pages: 923
Release: 2006-09-13
Genre: Computers
ISBN: 9783540448945

ICIAR 2006, the International Conference on Image Analysis and Recognition, was the third ICIAR conference, and was held in P ́ ovoa de Varzim, Portugal. ICIARisorganizedannually,andalternatesbetweenEuropeandNorthAmerica. ICIAR 2004 was held in Porto, Portugal and ICIAR 2005 in Toronto, Canada. The idea of o?ering these conferences came as a result of discussion between researchers in Portugal and Canada to encourage collaboration and exchange, mainlybetweenthesetwocountries,butalsowiththeopenparticipationofother countries, addressing recent advances in theory, methodology and applications. The response to the call for papers for ICIAR 2006 was higher than the two previous editions. From 389 full papers submitted, 163 were ?nally accepted (71 oral presentations, and 92 posters). The review process was carried out by the Program Committee members and other reviewers; all are experts in various image analysis and recognition areas. Each paper was reviewed by at least two reviewers, and also checked by the conference Co-chairs. The high quality of the papers in these proceedings is attributed ?rst to the authors, and second to the quality of the reviews provided by the experts. We would like to thank the authors for responding to our call, and we wholeheartedly thank the reviewers for their excellent work and for their timely response. It is this collective e?ort that resulted in the strong conference program and high-quality proceedings in your hands.

Neural Information Processing

Neural Information Processing
Author: Long Cheng
Publisher: Springer
Total Pages: 596
Release: 2018-12-03
Genre: Computers
ISBN: 3030042243

The seven-volume set of LNCS 11301-11307 constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The 6th volume, LNCS 11306, is organized in topical sections on time-series analysis; social systems; and image and signal processing.

3D Computer Vision

3D Computer Vision
Author: Yu-Jin Zhang
Publisher: Springer Nature
Total Pages: 480
Release:
Genre: Computer vision
ISBN: 9811976031

Zusammenfassung: This book offers a comprehensive and unbiased introduction to 3D Computer Vision, ranging from its foundations and essential principles to advanced methodologies and technologies. Divided into 11 chapters, it covers the main workflow of 3D computer vision as follows: camera imaging and calibration models; various modes and means of 3D image acquisition; binocular, trinocular and multi-ocular stereo vision matching techniques; monocular single-image and multi-image scene restoration methods; point cloud data processing and modeling; simultaneous location and mapping; generalized image and scene matching; and understanding spatial-temporal behavior. Each topic is addressed in a uniform manner: the dedicated chapter first covers the essential concepts and basic principles before presenting a selection of typical, specific methods and practical techniques. In turn, it introduces readers to the most important recent developments, especially in the last three years. This approach allows them to quickly familiarize themselves with the subject, implement the techniques discussed, and design or improve their own methods for specific applications. The book can be used as a textbook for graduate courses in computer science, computer engineering, electrical engineering, data science, and related subjects. It also offers a valuable reference guide for researchers and practitioners alike