Theory Of Association Schemes
Download Theory Of Association Schemes full books in PDF, epub, and Kindle. Read online free Theory Of Association Schemes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Paul-Hermann Zieschang |
Publisher | : Springer Science & Business Media |
Total Pages | : 314 |
Release | : 2005-10-20 |
Genre | : Mathematics |
ISBN | : 9783540261360 |
This book is a concept-oriented treatment of the structure theory of association schemes. The generalization of Sylow’s group theoretic theorems to scheme theory arises as a consequence of arithmetical considerations about quotient schemes. The theory of Coxeter schemes (equivalent to the theory of buildings) emerges naturally and yields a purely algebraic proof of Tits’ main theorem on buildings of spherical type.
Author | : R. A. Bailey |
Publisher | : Cambridge University Press |
Total Pages | : 410 |
Release | : 2004-02-26 |
Genre | : Mathematics |
ISBN | : 9781139449939 |
Association schemes are of interest to both mathematicians and statisticians and this book was written with both audiences in mind. For statisticians, it shows how to construct designs for experiments in blocks, how to compare such designs, and how to analyse data from them. The reader is only assumed to know very basic abstract algebra. For pure mathematicians, it tells why association schemes are important and develops the theory to the level of advanced research. This book arose from a course successfully taught by the author and as such the material is thoroughly class-tested. There are a great number of examples and exercises that will increase the book's appeal to both graduate students and their instructors. It is ideal for those coming either from pure mathematics or statistics backgrounds who wish to develop their understanding of association schemes.
Author | : Eiichi Bannai |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 303 |
Release | : 2021-02-22 |
Genre | : Mathematics |
ISBN | : 3110627736 |
This series is devoted to the publication of high-level monographs which cover the whole spectrum of current discrete mathematics and its applications in various fields. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of discrete mathematics. Contributions which are on the borderline of discrete mathematics and related fields and which stimulate further research at the crossroads of these areas are particularly welcome.
Author | : David Eisenbud |
Publisher | : Springer Science & Business Media |
Total Pages | : 265 |
Release | : 2006-04-06 |
Genre | : Mathematics |
ISBN | : 0387226397 |
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Author | : Daniel E. Cohen |
Publisher | : Cambridge University Press |
Total Pages | : 325 |
Release | : 1989-08-17 |
Genre | : Mathematics |
ISBN | : 0521341337 |
In this book the author aims to show the value of using topological methods in combinatorial group theory.
Author | : Chris Godsil |
Publisher | : Routledge |
Total Pages | : 368 |
Release | : 2017-10-19 |
Genre | : Mathematics |
ISBN | : 1351467514 |
This graduate level text is distinguished both by the range of topics and the novelty of the material it treats--more than half of the material in it has previously only appeared in research papers. The first half of this book introduces the characteristic and matchings polynomials of a graph. It is instructive to consider these polynomials together because they have a number of properties in common. The matchings polynomial has links with a number of problems in combinatorial enumeration, particularly some of the current work on the combinatorics of orthogonal polynomials. This connection is discussed at some length, and is also in part the stimulus for the inclusion of chapters on orthogonal polynomials and formal power series. Many of the properties of orthogonal polynomials are derived from properties of characteristic polynomials. The second half of the book introduces the theory of polynomial spaces, which provide easy access to a number of important results in design theory, coding theory and the theory of association schemes. This book should be of interest to second year graduate text/reference in mathematics.
Author | : Andries E. Brouwer |
Publisher | : Springer Science & Business Media |
Total Pages | : 254 |
Release | : 2011-12-17 |
Genre | : Mathematics |
ISBN | : 1461419395 |
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.
Author | : J. H. van Lint |
Publisher | : Cambridge University Press |
Total Pages | : 620 |
Release | : 2001-11-22 |
Genre | : Mathematics |
ISBN | : 9780521006019 |
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.
Author | : Andries E. Brouwer |
Publisher | : Springer Science & Business Media |
Total Pages | : 513 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642743412 |
Ever since the discovery of the five platonic solids in ancient times, the study of symmetry and regularity has been one of the most fascinating aspects of mathematics. Quite often the arithmetical regularity properties of an object imply its uniqueness and the existence of many symmetries. This interplay between regularity and symmetry properties of graphs is the theme of this book. Starting from very elementary regularity properties, the concept of a distance-regular graph arises naturally as a common setting for regular graphs which are extremal in one sense or another. Several other important regular combinatorial structures are then shown to be equivalent to special families of distance-regular graphs. Other subjects of more general interest, such as regularity and extremal properties in graphs, association schemes, representations of graphs in euclidean space, groups and geometries of Lie type, groups acting on graphs, and codes are covered independently. Many new results and proofs and more than 750 references increase the encyclopaedic value of this book.
Author | : David Eisenbud |
Publisher | : Cambridge University Press |
Total Pages | : 633 |
Release | : 2016-04-14 |
Genre | : Mathematics |
ISBN | : 1107017084 |
3264, the mathematical solution to a question concerning geometric figures.