Theory and Applications of the Poincaré Group

Theory and Applications of the Poincaré Group
Author: Young Suh Kim
Publisher: Springer Science & Business Media
Total Pages: 346
Release: 2012-12-06
Genre: Science
ISBN: 9400945582

Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is important to realize that the underlying scientific language for both disciplines is that of group theory. The role of group theory in quantum mechanics is well known. The same is true for special relativity. Therefore, the most effective approach to the problem of unifying these two important theories is to develop a group theory which can accommodate both special relativity and quantum mechanics. As is well known, Eugene P. Wigner is one of the pioneers in developing group theoretical approaches to relativistic quantum mechanics. His 1939 paper on the inhomogeneous Lorentz group laid the foundation for this important research line. It is generally agreed that this paper was somewhat ahead of its time in 1939, and that contemporary physicists must continue to make real efforts to appreciate fully the content of this classic work.

Physics of the Lorentz Group

Physics of the Lorentz Group
Author: Sibel Baskal
Publisher: Morgan & Claypool Publishers
Total Pages: 173
Release: 2015-11-01
Genre: Science
ISBN: 1681740621

This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.

Massless Representations of the Poincaré Group

Massless Representations of the Poincaré Group
Author: R. Mirman
Publisher: iUniverse
Total Pages: 233
Release: 2005-05
Genre: Elektromanyetizma
ISBN: 0595341241

Preface 1 The Physical Meaning of Poincare Massless Representations 1 2 Massless Representations 12 3 Massless Fields are Different 32 4 How to Couple Massless and Massive Matter 56 5 The Behavior of Matter in Fields 73 6 Geometrical Reasons for the Poincare Group 95 7 Description of the Electromagnetic Field 123 8 The Equations Governing Free Gravitation 135 9 How Matter Determines Gravitational Fields 150 10 Nonlinearity and Geometry 165 11 Quantum Gravity 183 References 201 Index 207.

Theory of Group Representations and Applications

Theory of Group Representations and Applications
Author: Asim Orhan Barut
Publisher: World Scientific
Total Pages: 750
Release: 1986
Genre: Mathematics
ISBN: 9789971502171

Lie!algebras - Topological!groups - Lie!groups - Representations - Special!functions - Induced!representations.

Group Theory and Quantum Mechanics

Group Theory and Quantum Mechanics
Author: Michael Tinkham
Publisher: Courier Corporation
Total Pages: 354
Release: 2012-04-20
Genre: Science
ISBN: 0486131661

This graduate-level text develops the aspects of group theory most relevant to physics and chemistry (such as the theory of representations) and illustrates their applications to quantum mechanics. The first five chapters focus chiefly on the introduction of methods, illustrated by physical examples, and the final three chapters offer a systematic treatment of the quantum theory of atoms, molecules, and solids. The formal theory of finite groups and their representation is developed in Chapters 1 through 4 and illustrated by examples from the crystallographic point groups basic to solid-state and molecular theory. Chapter 5 is devoted to the theory of systems with full rotational symmetry, Chapter 6 to the systematic presentation of atomic structure, and Chapter 7 to molecular quantum mechanics. Chapter 8, which deals with solid-state physics, treats electronic energy band theory and magnetic crystal symmetry. A compact and worthwhile compilation of the scattered material on standard methods, this volume presumes a basic understanding of quantum theory.

Linear Differential Equations and Group Theory from Riemann to Poincare

Linear Differential Equations and Group Theory from Riemann to Poincare
Author: Jeremy Gray
Publisher: Springer Science & Business Media
Total Pages: 357
Release: 2010-01-07
Genre: Mathematics
ISBN: 0817647732

This book is a study of how a particular vision of the unity of mathematics, often called geometric function theory, was created in the 19th century. The central focus is on the convergence of three mathematical topics: the hypergeometric and related linear differential equations, group theory, and on-Euclidean geometry. The text for this second edition has been greatly expanded and revised, and the existing appendices enriched. The exercises have been retained, making it possible to use the book as a companion to mathematics courses at the graduate level.

Unitary Representations of the Poincar‚ Group and Relativistic Wave Equations

Unitary Representations of the Poincar‚ Group and Relativistic Wave Equations
Author: Yoshio Ohnuki
Publisher: World Scientific
Total Pages: 234
Release: 1988
Genre: Science
ISBN: 9789971502508

This book is devoted to an extensive and systematic study on unitary representations of the Poincar‚ group. The Poincar‚ group plays an important role in understanding the relativistic picture of particles in quantum mechanics. Complete knowledge of every free particle states and their behaviour can be obtained once all the unitary irreducible representations of the Poincar‚ group are found. It is a surprising fact that a simple framework such as the Poincar‚ group, when unified with quantum theory, fixes our possible picture of particles severely and without exception. In this connection, the theory of unitary representations of the Poincar‚ group provides a fundamental concept of relativistic quantum mechanics and field theory.

Group Theory in a Nutshell for Physicists

Group Theory in a Nutshell for Physicists
Author: A. Zee
Publisher: Princeton University Press
Total Pages: 632
Release: 2016-03-29
Genre: Science
ISBN: 1400881188

A concise, modern textbook on group theory written especially for physicists Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)

Group Theory and General Relativity

Group Theory and General Relativity
Author: Moshe Carmeli
Publisher: World Scientific
Total Pages: 416
Release: 2000
Genre: Science
ISBN: 9781860942341

This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory. There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups -- particularly the Lorentz and the SL(2, C) groups -- to the theory of general relativity. Each chapter is concluded with a set of problems. The topics covered range from the fundamentals of general relativity theory, its formulation as an SL(2, C) gauge theory, to exact solutions of the Einstein gravitational field equations. The important Bondi-Metzner-Sachs group, and its representations, conclude the book The entire book is self-contained in both group theory and general relativity theory, and no prior knowledge of either is assumed. The subject of this book constitutes a relevant link between field theoreticians and general relativity theoreticians, who usually work rather independently of each other. The treatise is highly topical and of real interest to theoretical physicists, general relativists and applied mathematicians. It is invaluable to graduate students and research workers in quantum field theory, general relativity and elementary particle theory.

Symmetries and Group Theory in Particle Physics

Symmetries and Group Theory in Particle Physics
Author: Giovanni Costa
Publisher: Springer
Total Pages: 300
Release: 2012-02-03
Genre: Science
ISBN: 3642154824

Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.