Hadamard Matrices and Their Applications

Hadamard Matrices and Their Applications
Author: K. J. Horadam
Publisher: Princeton University Press
Total Pages: 280
Release: 2012-01-06
Genre: Mathematics
ISBN: 1400842905

In Hadamard Matrices and Their Applications, K. J. Horadam provides the first unified account of cocyclic Hadamard matrices and their applications in signal and data processing. This original work is based on the development of an algebraic link between Hadamard matrices and the cohomology of finite groups that was discovered fifteen years ago. The book translates physical applications into terms a pure mathematician will appreciate, and theoretical structures into ones an applied mathematician, computer scientist, or communications engineer can adapt and use. The first half of the book explains the state of our knowledge of Hadamard matrices and two important generalizations: matrices with group entries and multidimensional Hadamard arrays. It focuses on their applications in engineering and computer science, as signal transforms, spreading sequences, error-correcting codes, and cryptographic primitives. The book's second half presents the new results in cocyclic Hadamard matrices and their applications. Full expression of this theory has been realized only recently, in the Five-fold Constellation. This identifies cocyclic generalized Hadamard matrices with particular "stars" in four other areas of mathematics and engineering: group cohomology, incidence structures, combinatorics, and signal correlation. Pointing the way to possible new developments in a field ripe for further research, this book formulates and discusses ninety open questions.

Matrix Analysis for Statistics

Matrix Analysis for Statistics
Author: James R. Schott
Publisher: John Wiley & Sons
Total Pages: 547
Release: 2016-06-20
Genre: Mathematics
ISBN: 1119092485

An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

Hadamard Matrices and Their Applications

Hadamard Matrices and Their Applications
Author: K. J. Horadam
Publisher: Princeton University Press
Total Pages: 277
Release: 2007
Genre: Mathematics
ISBN: 069111921X

In Hadamard Matrices and Their Applications, K. J. Horadam provides the first unified account of cocyclic Hadamard matrices and their applications in signal and data processing. This original work is based on the development of an algebraic link between Hadamard matrices and the cohomology of finite groups that was discovered fifteen years ago. The book translates physical applications into terms a pure mathematician will appreciate, and theoretical structures into ones an applied mathematician, computer scientist, or communications engineer can adapt and use. The first half of the book explains the state of our knowledge of Hadamard matrices and two important generalizations: matrices with group entries and multidimensional Hadamard arrays. It focuses on their applications in engineering and computer science, as signal transforms, spreading sequences, error-correcting codes, and cryptographic primitives. The book's second half presents the new results in cocyclic Hadamard matrices and their applications. Full expression of this theory has been realized only recently, in the Five-fold Constellation. This identifies cocyclic generalized Hadamard matrices with particular "stars" in four other areas of mathematics and engineering: group cohomology, incidence structures, combinatorics, and signal correlation. Pointing the way to possible new developments in a field ripe for further research, this book formulates and discusses ninety open questions.

Algebraic Design Theory

Algebraic Design Theory
Author: Warwick De Launey
Publisher: American Mathematical Soc.
Total Pages: 314
Release: 2011
Genre: Mathematics
ISBN: 0821844962

Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book was written to inspire researchers, ranging from the expert to the beginning student, in algebra or design theory, to investigate the fundamental algebraic problems posed by combinatorial design theory.

Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition

Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition
Author: Michel C. Delfour
Publisher: SIAM
Total Pages: 446
Release: 2019-12-19
Genre: Mathematics
ISBN: 1611975964

This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization. Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition builds upon its prior edition’s foundations in Hadamard semidifferential calculus, showcasing new material linked to convex analysis and nonsmooth optimization. It presents a modern treatment of optimization and Hadamard semidifferential calculus while remaining at a level that is accessible to undergraduate students, and challenges students with exercises related to problems in such fields as engineering, mechanics, medicine, physics, and economics. Answers are supplied in Appendix B. Students of mathematics, physics, engineering, economics, and other disciplines that demand a basic knowledge of mathematical analysis and linear algebra will find this a fitting primary or companion resource for their studies. This textbook has been designed and tested for a one-term course at the undergraduate level. In its full version, it is appropriate for a first-year graduate course and as a reference.

Contemporary Design Theory

Contemporary Design Theory
Author: Jeffrey H. Dinitz
Publisher: John Wiley & Sons
Total Pages: 660
Release: 1992-08-04
Genre: Mathematics
ISBN: 9780471531418

Foremost experts in their field have contributed articles resulting in a compilation of useful and timely surveys in this ever-expanding field. Each of these 12 original papers covers important aspects of design theory including several in areas that have not previously been surveyed. Also contains surveys updating earlier ones where research is particularly active.

Handbook of Big Data Analytics

Handbook of Big Data Analytics
Author: Wolfgang Karl Härdle
Publisher: Springer
Total Pages: 532
Release: 2018-07-20
Genre: Computers
ISBN: 3319182846

Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.

Hadamard Transforms

Hadamard Transforms
Author: S. S. Agaian
Publisher: SPIE-International Society for Optical Engineering
Total Pages: 0
Release: 2011
Genre: Hadamard matrices
ISBN: 9780819486479

The Hadamard matrix and Hadamard transform are fundamental problem-solving tools in a wide spectrum of scientific disciplines and technologies, such as communication systems, signal and image processing (signal representation, coding, filtering, recognition, and watermarking), digital logic (Boolean function analysis and synthesis), and fault-tolerant system design. Hadamard Transforms intends to bring together different topics concerning current developments in Hadamard matrices, transforms, and their applications. Each chapter begins with the basics of the theory, progresses to more advanced topics, and then discusses cutting-edge implementation techniques. The book covers a wide range of problems related to these matrices/transforms, formulates open questions, and points the way to potential advancements. Hadamard Transforms is suitable for a wide variety of audiences, including graduate students in electrical and computer engineering, mathematics, or computer science. Readers are not presumed to have a sophisticated mathematical background, but some mathematical background is helpful. This book will prepare readers for further exploration and will support aspiring researchers in the field.

Hadamard Matrices

Hadamard Matrices
Author: Jennifer Seberry
Publisher: John Wiley & Sons
Total Pages: 352
Release: 2020-08-25
Genre: Mathematics
ISBN: 111952024X

Up-to-date resource on Hadamard matrices Hadamard Matrices: Constructions using Number Theory and Algebra provides students with a discussion of the basic definitions used for Hadamard Matrices as well as more advanced topics in the subject, including: Gauss sums, Jacobi sums and relative Gauss sums Cyclotomic numbers Plug-in matrices, arrays, sequences and M-structure Galois rings and Menon Hadamard differences sets Paley difference sets and Paley type partial difference sets Symmetric Hadamard matrices, skew Hadamard matrices and amicable Hadamard matrices A discussion of asymptotic existence of Hadamard matrices Maximal determinant matrices, embeddability of Hadamard matrices and growth problem for Hadamard matrices The book can be used as a textbook for graduate courses in combinatorics, or as a reference for researchers studying Hadamard matrices. Utilized in the fields of signal processing and design experiments, Hadamard matrices have been used for 150 years, and remain practical today. Hadamard Matrices combines a thorough discussion of the basic concepts underlying the subject matter with more advanced applications that will be of interest to experts in the area.