Theorems in School

Theorems in School
Author: Paolo Boero
Publisher: Sense Publishers
Total Pages: 335
Release: 2007
Genre: Education
ISBN: 9077874216

This book, addressing mathematics educators, teacher-trainers and teachers, is published as a contribution to the endeavour of renewing the teaching of proof (and theorems) on the basis of historical-epistemological, cognitive and didactical considerations.

Theorems in School

Theorems in School
Author: Paolo Boero
Publisher: Brill / Sense
Total Pages: 348
Release: 2007
Genre: Education
ISBN:

This book, addressing mathematics educators, teacher-trainers and teachers, is published as a contribution to the endeavour of renewing the teaching of proof (and theorems) on the basis of historical-epistemological, cognitive and didactical considerations.

Theorems of the 21st Century

Theorems of the 21st Century
Author: Bogdan Grechuk
Publisher: Springer
Total Pages: 455
Release: 2019-06-15
Genre: Mathematics
ISBN: 303019096X

This book consists of short descriptions of 106 mathematical theorems, which belong to the great achievements of 21st century mathematics but require relatively little mathematical background to understand their formulation and appreciate their importance. The selected theorems of this volume, chosen from the famous Annals of Mathematics journal, cover a broad range of topics from across mathematics. Each theorem description is essentially self-contained, can be read independently of the others, and requires as little preliminary knowledge as possible. Although the sections often start with an informal discussion and toy examples, all the necessary definitions are included and each description culminates in the precise formulation of the corresponding theorem. Filling the gap between surveys written for mathematicians and popular mathematics, this book is intended for readers with a keen interest in contemporary mathematics.

The Art and Craft of Problem Solving

The Art and Craft of Problem Solving
Author: Paul Zeitz
Publisher: John Wiley & Sons
Total Pages: 389
Release: 2017
Genre: Problem solving
ISBN: 1119239907

This text on mathematical problem solving provides a comprehensive outline of "problemsolving-ology," concentrating on strategy and tactics. It discusses a number of standard mathematical subjects such as combinatorics and calculus from a problem solver's perspective.

Modern Classical Homotopy Theory

Modern Classical Homotopy Theory
Author: Jeffrey Strom
Publisher: American Mathematical Soc.
Total Pages: 862
Release: 2011-10-19
Genre: Mathematics
ISBN: 0821852868

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Birth of a Theorem

Birth of a Theorem
Author: Cédric Villani
Publisher: Macmillan + ORM
Total Pages: 260
Release: 2015-04-14
Genre: Biography & Autobiography
ISBN: 0374710236

In 2010, French mathematician Cédric Villani received the Fields Medal, the most coveted prize in mathematics, in recognition of a proof which he devised with his close collaborator Clément Mouhot to explain one of the most surprising theories in classical physics. Birth of aTheorem is Villani's own account of the years leading up to the award. It invites readers inside the mind of a great mathematician as he wrestles with the most important work of his career. But you don't have to understand nonlinear Landau damping to love Birth of aTheorem. It doesn't simplify or overexplain; rather, it invites readers into collaboration. Villani's diaries, emails, and musings enmesh you in the process of discovery. You join him in unproductive lulls and late-night breakthroughs. You're privy to the dining-hall conversations at the world's greatest research institutions. Villani shares his favorite songs, his love of manga, and the imaginative stories he tells his children. In mathematics, as in any creative work, it is the thinker's whole life that propels discovery—and with Birth of aTheorem, Cédric Villani welcomes you into his.

Theorems and Counterexamples in Mathematics

Theorems and Counterexamples in Mathematics
Author: Bernard R. Gelbaum
Publisher: Springer Science & Business Media
Total Pages: 339
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461209935

The gratifying response to Counterexamples in analysis (CEA) was followed, when the book went out of print, by expressions of dismay from those who were unable to acquire it. The connection of the present volume with CEA is clear, although the sights here are set higher. In the quarter-century since the appearance of CEA, mathematical education has taken some large steps reflected in both the undergraduate and graduate curricula. What was once taken as very new, remote, or arcane is now a well-established part of mathematical study and discourse. Consequently the approach here is designed to match the observed progress. The contents are intended to provide graduate and ad vanced undergraduate students as well as the general mathematical public with a modern treatment of some theorems and examples that constitute a rounding out and elaboration of the standard parts of algebra, analysis, geometry, logic, probability, set theory, and topology. The items included are presented in the spirit of a conversation among mathematicians who know the language but are interested in some of the ramifications of the subjects with which they routinely deal. Although such an approach might be construed as demanding, there is an extensive GLOSSARY jlNDEX where all but the most familiar notions are clearly defined and explained. The object ofthe body of the text is more to enhance what the reader already knows than to review definitions and notations that have become part of every mathematician's working context.

Basic Mathematics

Basic Mathematics
Author: Serge Lang
Publisher:
Total Pages: 475
Release: 1988-01
Genre: Mathematics
ISBN: 9783540967873

How to Prove It

How to Prove It
Author: Daniel J. Velleman
Publisher: Cambridge University Press
Total Pages: 401
Release: 2006-01-16
Genre: Mathematics
ISBN: 0521861241

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.