Uncertain Volatility Models

Uncertain Volatility Models
Author: Robert Buff
Publisher: Springer Science & Business Media
Total Pages: 246
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642563236

This is one of the only books to describe uncertain volatility models in mathematical finance and their computer implementation for portfolios of vanilla, barrier and American options in equity and FX markets. Uncertain volatility models place subjective constraints on the volatility of the stochastic process of the underlying asset and evaluate option portfolios under worst- and best-case scenarios. This book, which is bundled with software, is aimed at graduate students, researchers and practitioners who wish to study advanced aspects of volatility risk in portfolios of vanilla and exotic options. The reader is assumed to be familiar with arbitrage pricing theory.

Brownian Motion

Brownian Motion
Author: Peter Mörters
Publisher: Cambridge University Press
Total Pages:
Release: 2010-03-25
Genre: Mathematics
ISBN: 1139486578

This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.

Backward Stochastic Differential Equations

Backward Stochastic Differential Equations
Author: N El Karoui
Publisher: CRC Press
Total Pages: 236
Release: 1997-01-17
Genre: Mathematics
ISBN: 9780582307339

This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.

Nonlinear Expectations and Stochastic Calculus under Uncertainty

Nonlinear Expectations and Stochastic Calculus under Uncertainty
Author: Shige Peng
Publisher: Springer Nature
Total Pages: 216
Release: 2019-09-09
Genre: Mathematics
ISBN: 3662599031

This book is focused on the recent developments on problems of probability model uncertainty by using the notion of nonlinear expectations and, in particular, sublinear expectations. It provides a gentle coverage of the theory of nonlinear expectations and related stochastic analysis. Many notions and results, for example, G-normal distribution, G-Brownian motion, G-Martingale representation theorem, and related stochastic calculus are first introduced or obtained by the author. This book is based on Shige Peng’s lecture notes for a series of lectures given at summer schools and universities worldwide. It starts with basic definitions of nonlinear expectations and their relation to coherent measures of risk, law of large numbers and central limit theorems under nonlinear expectations, and develops into stochastic integral and stochastic calculus under G-expectations. It ends with recent research topic on G-Martingale representation theorem and G-stochastic integral for locally integrable processes. With exercises to practice at the end of each chapter, this book can be used as a graduate textbook for students in probability theory and mathematical finance. Each chapter also concludes with a section Notes and Comments, which gives history and further references on the material covered in that chapter. Researchers and graduate students interested in probability theory and mathematical finance will find this book very useful.

Derivatives in Financial Markets with Stochastic Volatility

Derivatives in Financial Markets with Stochastic Volatility
Author: Jean-Pierre Fouque
Publisher: Cambridge University Press
Total Pages: 222
Release: 2000-07-03
Genre: Business & Economics
ISBN: 9780521791632

This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.

Fixed Income Modelling

Fixed Income Modelling
Author: Claus Munk
Publisher: Oxford University Press
Total Pages: 573
Release: 2011-06-30
Genre: Business & Economics
ISBN: 0199575088

A large number of securities related to various interest rates are traded in financial markets. Traders and analysts in the financial industry apply models based on economics, mathematics and probability theory to compute reasonable prices and risk measures for these securities. This book offers a unified presentation of such models and securities.

Copula Methods in Finance

Copula Methods in Finance
Author: Umberto Cherubini
Publisher: John Wiley & Sons
Total Pages: 310
Release: 2004-10-22
Genre: Business & Economics
ISBN: 0470863455

Copula Methods in Finance is the first book to address the mathematics of copula functions illustrated with finance applications. It explains copulas by means of applications to major topics in derivative pricing and credit risk analysis. Examples include pricing of the main exotic derivatives (barrier, basket, rainbow options) as well as risk management issues. Particular focus is given to the pricing of asset-backed securities and basket credit derivative products and the evaluation of counterparty risk in derivative transactions.

Continuous-time Stochastic Control and Optimization with Financial Applications

Continuous-time Stochastic Control and Optimization with Financial Applications
Author: Huyên Pham
Publisher: Springer Science & Business Media
Total Pages: 243
Release: 2009-05-28
Genre: Mathematics
ISBN: 3540895000

Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Nonlinear Option Pricing

Nonlinear Option Pricing
Author: Julien Guyon
Publisher: CRC Press
Total Pages: 486
Release: 2013-12-19
Genre: Business & Economics
ISBN: 1466570334

New Tools to Solve Your Option Pricing Problems For nonlinear PDEs encountered in quantitative finance, advanced probabilistic methods are needed to address dimensionality issues. Written by two leaders in quantitative research—including Risk magazine’s 2013 Quant of the Year—Nonlinear Option Pricing compares various numerical methods for solving high-dimensional nonlinear problems arising in option pricing. Designed for practitioners, it is the first authored book to discuss nonlinear Black-Scholes PDEs and compare the efficiency of many different methods. Real-World Solutions for Quantitative Analysts The book helps quants develop both their analytical and numerical expertise. It focuses on general mathematical tools rather than specific financial questions so that readers can easily use the tools to solve their own nonlinear problems. The authors build intuition through numerous real-world examples of numerical implementation. Although the focus is on ideas and numerical examples, the authors introduce relevant mathematical notions and important results and proofs. The book also covers several original approaches, including regression methods and dual methods for pricing chooser options, Monte Carlo approaches for pricing in the uncertain volatility model and the uncertain lapse and mortality model, the Markovian projection method and the particle method for calibrating local stochastic volatility models to market prices of vanilla options with/without stochastic interest rates, the a + bλ technique for building local correlation models that calibrate to market prices of vanilla options on a basket, and a new stochastic representation of nonlinear PDE solutions based on marked branching diffusions.

Quantitative Analysis in Financial Markets

Quantitative Analysis in Financial Markets
Author: Marco Avellaneda
Publisher: World Scientific
Total Pages: 372
Release: 1999
Genre: Mathematics
ISBN: 9789810246938

Contains lectures presented at the Courant Institute's Mathematical Finance Seminar.