The Top Ten Algorithms In Data Mining
Download The Top Ten Algorithms In Data Mining full books in PDF, epub, and Kindle. Read online free The Top Ten Algorithms In Data Mining ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Xindong Wu |
Publisher | : CRC Press |
Total Pages | : 230 |
Release | : 2009-04-09 |
Genre | : Business & Economics |
ISBN | : 142008965X |
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is wri
Author | : Mohammed J. Zaki |
Publisher | : Cambridge University Press |
Total Pages | : 607 |
Release | : 2014-05-12 |
Genre | : Computers |
ISBN | : 0521766338 |
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Author | : Jure Leskovec |
Publisher | : Cambridge University Press |
Total Pages | : 480 |
Release | : 2014-11-13 |
Genre | : Computers |
ISBN | : 1107077230 |
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Author | : Mohammed J. Zaki |
Publisher | : Cambridge University Press |
Total Pages | : 779 |
Release | : 2020-01-30 |
Genre | : Business & Economics |
ISBN | : 1108473989 |
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Author | : Gisele L. Pappa |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2012-03-14 |
Genre | : Computers |
ISBN | : 9783642261251 |
Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.
Author | : Guozhu Dong |
Publisher | : CRC Press |
Total Pages | : 428 |
Release | : 2016-04-19 |
Genre | : Business & Economics |
ISBN | : 1439854335 |
A Fruitful Field for Researching Data Mining Methodology and for Solving Real-Life ProblemsContrast Data Mining: Concepts, Algorithms, and Applications collects recent results from this specialized area of data mining that have previously been scattered in the literature, making them more accessible to researchers and developers in data mining and
Author | : David J. Hand |
Publisher | : MIT Press |
Total Pages | : 594 |
Release | : 2001-08-17 |
Genre | : Computers |
ISBN | : 9780262082907 |
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
Author | : Kenneth Lange |
Publisher | : SIAM |
Total Pages | : 227 |
Release | : 2020-05-04 |
Genre | : Mathematics |
ISBN | : 1611976170 |
Algorithms are a dominant force in modern culture, and every indication is that they will become more pervasive, not less. The best algorithms are undergirded by beautiful mathematics. This text cuts across discipline boundaries to highlight some of the most famous and successful algorithms. Readers are exposed to the principles behind these examples and guided in assembling complex algorithms from simpler building blocks. Written in clear, instructive language within the constraints of mathematical rigor, Algorithms from THE BOOK includes a large number of classroom-tested exercises at the end of each chapter. The appendices cover background material often omitted from undergraduate courses. Most of the algorithm descriptions are accompanied by Julia code, an ideal language for scientific computing. This code is immediately available for experimentation. Algorithms from THE BOOK is aimed at first-year graduate and advanced undergraduate students. It will also serve as a convenient reference for professionals throughout the mathematical sciences, physical sciences, engineering, and the quantitative sectors of the biological and social sciences.
Author | : Mohamed Medhat Gaber |
Publisher | : Springer Science & Business Media |
Total Pages | : 241 |
Release | : 2012-07-20 |
Genre | : Computers |
ISBN | : 3642280471 |
Data mining, an interdisciplinary field combining methods from artificial intelligence, machine learning, statistics and database systems, has grown tremendously over the last 20 years and produced core results for applications like business intelligence, spatio-temporal data analysis, bioinformatics, and stream data processing. The fifteen contributors to this volume are successful and well-known data mining scientists and professionals. Although by no means an exhaustive list, all of them have helped the field to gain the reputation and importance it enjoys today, through the many valuable contributions they have made. Mohamed Medhat Gaber has asked them (and many others) to write down their journeys through the data mining field, trying to answer the following questions: 1. What are your motives for conducting research in the data mining field? 2. Describe the milestones of your research in this field. 3. What are your notable success stories? 4. How did you learn from your failures? 5. Have you encountered unexpected results? 6. What are the current research issues and challenges in your area? 7. Describe your research tools and techniques. 8. How would you advise a young researcher to make an impact? 9. What do you predict for the next two years in your area? 10. What are your expectations in the long term? In order to maintain the informal character of their contributions, they were given complete freedom as to how to organize their answers. This narrative presentation style provides PhD students and novices who are eager to find their way to successful research in data mining with valuable insights into career planning. In addition, everyone else interested in the history of computer science may be surprised about the stunning successes and possible failures computer science careers (still) have to offer.
Author | : Lars Elden |
Publisher | : SIAM |
Total Pages | : 226 |
Release | : 2007-07-12 |
Genre | : Computers |
ISBN | : 0898716268 |
Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.