Iterative Methods for Linear Systems

Iterative Methods for Linear Systems
Author: Maxim A. Olshanskii
Publisher: SIAM
Total Pages: 257
Release: 2014-07-21
Genre: Mathematics
ISBN: 1611973465

Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??

The Theory and Applications of Iteration Methods

The Theory and Applications of Iteration Methods
Author: Ioannis K. Argyros
Publisher: CRC Press
Total Pages: 471
Release: 2022-01-20
Genre: Mathematics
ISBN: 1000536750

The theory and applications of Iteration Methods is a very fast-developing field of numerical analysis and computer methods. The second edition is completely updated and continues to present the state-of-the-art contemporary theory of iteration methods with practical applications, exercises, case studies, and examples of where and how they can be used. The Theory and Applications of Iteration Methods, Second Edition includes newly developed iteration methods taking advantage of the most recent technology (computers, robots, machines). It extends the applicability of well-established methods by increasing the convergence domain and offers sharper error tolerance. New proofs and ideas for handling convergence are introduced along with a new variety of story problems picked from diverse disciplines. This new edition is for researchers, practitioners, and students in engineering, economics, and computational sciences.

Convergence and Applications of Newton-type Iterations

Convergence and Applications of Newton-type Iterations
Author: Ioannis K. Argyros
Publisher: Springer Science & Business Media
Total Pages: 513
Release: 2008-06-12
Genre: Mathematics
ISBN: 0387727434

This monograph is devoted to a comprehensive treatment of iterative methods for solving nonlinear equations with particular emphasis on semi-local convergence analysis. Theoretical results are applied to engineering, dynamic economic systems, input-output systems, nonlinear and linear differential equations, and optimization problems. Accompanied by many exercises, some with solutions, the book may be used as a supplementary text in the classroom for an advanced course on numerical functional analysis.

Applied Iterative Methods

Applied Iterative Methods
Author: Charles L. Byrne
Publisher: A K Peters/CRC Press
Total Pages: 408
Release: 2008
Genre: Mathematics
ISBN:

This book is a collection of essays on iterative algorithms and their uses. It focuses on the mathematics of medical image reconstruction, with emphasis on Fourier inversion. The book discusses the problems and algorithms in the context of operators on finite-dimensional Euclidean space.

Iterative Methods and Preconditioners for Systems of Linear Equations

Iterative Methods and Preconditioners for Systems of Linear Equations
Author: Gabriele Ciaramella
Publisher: SIAM
Total Pages: 285
Release: 2022-02-08
Genre: Mathematics
ISBN: 1611976901

Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives complete convergence estimates for all methods, illustrates and provides MATLAB codes for all methods, and studies and tests all preconditioners first as stationary iterative solvers. This textbook is appropriate for undergraduate and graduate students who want an overview or deeper understanding of iterative methods. Its focus on both analysis and numerical experiments allows the material to be taught with very little preparation, since all the arguments are self-contained, and makes it appropriate for self-study as well. It can be used in courses on iterative methods, Krylov methods and preconditioners, and numerical optimal control. Scientists and engineers interested in new topics and applications will also find the text useful.

A Contemporary Study of Iterative Methods

A Contemporary Study of Iterative Methods
Author: A. Alberto Magrenan
Publisher: Academic Press
Total Pages: 402
Release: 2018-02-13
Genre: Mathematics
ISBN: 0128094931

A Contemporary Study of Iterative Methods: Convergence, Dynamics and Applications evaluates and compares advances in iterative techniques, also discussing their numerous applications in applied mathematics, engineering, mathematical economics, mathematical biology and other applied sciences. It uses the popular iteration technique in generating the approximate solutions of complex nonlinear equations that is suitable for aiding in the solution of advanced problems in engineering, mathematical economics, mathematical biology and other applied sciences. Iteration methods are also applied for solving optimization problems. In such cases, the iteration sequences converge to an optimal solution of the problem at hand. - Contains recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces - Encompasses the novel tool of dynamic analysis for iterative methods, including new developments in Smale stability theory and polynomiography - Explores the uses of computation of iterative methods across non-linear analysis - Uniquely places discussion of derivative-free methods in context of other discoveries, aiding comparison and contrast between options

Operators and Iterative Processes of Fejér Type

Operators and Iterative Processes of Fejér Type
Author: V. V. Vasin
Publisher: Walter de Gruyter
Total Pages: 170
Release: 2009
Genre: Mathematics
ISBN: 3110218186

The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

Iterative Methods for Solving Nonlinear Equations and Systems

Iterative Methods for Solving Nonlinear Equations and Systems
Author: Juan R. Torregrosa
Publisher: MDPI
Total Pages: 494
Release: 2019-12-06
Genre: Mathematics
ISBN: 3039219405

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.

Iterative Methods in Combinatorial Optimization

Iterative Methods in Combinatorial Optimization
Author: Lap Chi Lau
Publisher: Cambridge University Press
Total Pages: 255
Release: 2011-04-18
Genre: Computers
ISBN: 1139499394

With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.