The Structure of Complex Networks

The Structure of Complex Networks
Author: Ernesto Estrada
Publisher: Oxford University Press
Total Pages: 478
Release: 2012
Genre: Computers
ISBN: 019959175X

The book integrates approaches from mathematics, physics and computer sciences to analyse the organisation of complex networks. Every organisational principle of networks is defined, quantified and then analysed for its influences on the properties and functions of molecular, biological, ecological and social networks.

Structural Analysis of Complex Networks

Structural Analysis of Complex Networks
Author: Matthias Dehmer
Publisher: Springer Science & Business Media
Total Pages: 493
Release: 2010-10-14
Genre: Mathematics
ISBN: 0817647899

Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science, machine learning, artificial intelligence, computational and systems biology, cognitive science, computational linguistics, and mathematical chemistry. It may also be used as a supplementary textbook in graduate-level seminars on structural graph analysis, complex networks, or network-based machine learning methods.

Higher Order Networks: An Introduction to Simplicial Complexes

Higher Order Networks: An Introduction to Simplicial Complexes
Author: Ginestra Bianconi
Publisher: Cambridge University Press
Total Pages: 149
Release: 2021-12-23
Genre: Mathematics
ISBN: 1108726739

This Element presents one of the most recent developments in network science in a highly accessible style. This Element will be of interest to interdisciplinary scientists working in network science, in addition to mathematicians working in discrete topology and geometry and physicists working in quantum gravity.

Community Structure of Complex Networks

Community Structure of Complex Networks
Author: Hua-Wei Shen
Publisher: Springer Science & Business Media
Total Pages: 128
Release: 2013-01-06
Genre: Computers
ISBN: 3642318215

Community structure is a salient structural characteristic of many real-world networks. Communities are generally hierarchical, overlapping, multi-scale and coexist with other types of structural regularities of networks. This poses major challenges for conventional methods of community detection. This book will comprehensively introduce the latest advances in community detection, especially the detection of overlapping and hierarchical community structures, the detection of multi-scale communities in heterogeneous networks, and the exploration of multiple types of structural regularities. These advances have been successfully applied to analyze large-scale online social networks, such as Facebook and Twitter. This book provides readers a convenient way to grasp the cutting edge of community detection in complex networks. The thesis on which this book is based was honored with the “Top 100 Excellent Doctoral Dissertations Award” from the Chinese Academy of Sciences and was nominated as the “Outstanding Doctoral Dissertation” by the Chinese Computer Federation.

Complex Networks

Complex Networks
Author: Reuven Cohen
Publisher: Cambridge University Press
Total Pages: 248
Release: 2010-07-08
Genre: Science
ISBN: 9780521841566

Examining important results and analytical techniques, this graduate-level textbook is a step-by-step presentation of the structure and function of complex networks. Using a range of examples, from the stability of the internet to efficient methods of immunizing populations, and from epidemic spreading to how one might efficiently search for individuals, this textbook explains the theoretical methods that can be used, and the experimental and analytical results obtained in the study and research of complex networks. Giving detailed derivations of many results in complex networks theory, this is an ideal text to be used by graduate students entering the field. End-of-chapter review questions help students monitor their own understanding of the materials presented.

Large Scale Structure And Dynamics Of Complex Networks: From Information Technology To Finance And Natural Science

Large Scale Structure And Dynamics Of Complex Networks: From Information Technology To Finance And Natural Science
Author: Alessandro Vespignani
Publisher: World Scientific
Total Pages: 264
Release: 2007-06-28
Genre: Computers
ISBN: 9814475416

This book is the culmination of three years of research effort on a multidisciplinary project in which physicists, mathematicians, computer scientists and social scientists worked together to arrive at a unifying picture of complex networks. The contributed chapters form a reference for the various problems in data analysis visualization and modeling of complex networks.

Complex Networks

Complex Networks
Author: Vito Latora
Publisher: Cambridge University Press
Total Pages: 585
Release: 2017-09-28
Genre: Computers
ISBN: 1107103185

A comprehensive introduction to the theory and applications of complex network science, complete with real-world data sets and software tools.

Graph Spectra for Complex Networks

Graph Spectra for Complex Networks
Author: Piet van Mieghem
Publisher: Cambridge University Press
Total Pages: 363
Release: 2010-12-02
Genre: Technology & Engineering
ISBN: 1139492276

Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.

Dynamical Processes on Complex Networks

Dynamical Processes on Complex Networks
Author: Alain Barrat
Publisher: Cambridge University Press
Total Pages: 361
Release: 2012-10-11
Genre: Science
ISBN: 9781107626256

The availability of large data sets have allowed researchers to uncover complex properties such as large scale fluctuations and heterogeneities in many networks which have lead to the breakdown of standard theoretical frameworks and models. Until recently these systems were considered as haphazard sets of points and connections. Recent advances have generated a vigorous research effort in understanding the effect of complex connectivity patterns on dynamical phenomena. For example, a vast number of everyday systems, from the brain to ecosystems, power grids and the Internet, can be represented as large complex networks. This new and recent account presents a comprehensive explanation of these effects.

Complex Network Analysis in Python

Complex Network Analysis in Python
Author: Dmitry Zinoviev
Publisher: Pragmatic Bookshelf
Total Pages: 330
Release: 2018-01-19
Genre: Computers
ISBN: 1680505408

Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.