The Story Of Algebraic Numbers In The First Half Of The 20th Century
Download The Story Of Algebraic Numbers In The First Half Of The 20th Century full books in PDF, epub, and Kindle. Read online free The Story Of Algebraic Numbers In The First Half Of The 20th Century ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Władysław Narkiewicz |
Publisher | : Springer |
Total Pages | : 448 |
Release | : 2019-01-18 |
Genre | : Mathematics |
ISBN | : 3030037541 |
The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period. The reader will get information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done earlier, which may hide some ideas which could be applied in contemporary research.
Author | : Franz Halter-Koch |
Publisher | : CRC Press |
Total Pages | : 784 |
Release | : 2020-05-18 |
Genre | : Mathematics |
ISBN | : 042901466X |
The author offers a thorough presentation of the classical theory of algebraic numbers and algebraic functions which both in its conception and in many details differs from the current literature on the subject. The basic features are: Field-theoretic preliminaries and a detailed presentation of Dedekind’s ideal theory including non-principal orders and various types of class groups; the classical theory of algebraic number fields with a focus on quadratic, cubic and cyclotomic fields; basics of the analytic theory including the prime ideal theorem, density results and the determination of the arithmetic by the class group; a thorough presentation of valuation theory including the theory of difference, discriminants, and higher ramification. The theory of function fields is based on the ideal and valuation theory developed before; it presents the Riemann-Roch theorem on the basis of Weil differentials and highlights in detail the connection with classical differentials. The theory of congruence zeta functions and a proof of the Hasse-Weil theorem represent the culminating point of the volume. The volume is accessible with a basic knowledge in algebra and elementary number theory. It empowers the reader to follow the advanced number-theoretic literature, and is a solid basis for the study of the forthcoming volume on the foundations and main results of class field theory. Key features: • A thorough presentation of the theory of Algebraic Numbers and Algebraic Functions on an ideal and valuation-theoretic basis. • Several of the topics both in the number field and in the function field case were not presented before in this context. • Despite presenting many advanced topics, the text is easily readable. Franz Halter-Koch is professor emeritus at the university of Graz. He is the author of “Ideal Systems” (Marcel Dekker,1998), “Quadratic Irrationals” (CRC, 2013), and a co-author of “Non-Unique Factorizations” (CRC 2006).
Author | : Franz Halter-Koch |
Publisher | : CRC Press |
Total Pages | : 425 |
Release | : 2022-03-13 |
Genre | : Mathematics |
ISBN | : 0429014724 |
The book contains the main results of class field theory and Artin L functions, both for number fields and function fields, together with the necessary foundations concerning topological groups, cohomology, and simple algebras. While the first three chapters presuppose only basic algebraic and topological knowledge, the rest of the books assumes knowledge of the basic theory of algebraic numbers and algebraic functions, such as those contained in my previous book, An Invitation to Algebraic Numbers and Algebraic Functions (CRC Press, 2020). The main features of the book are: A detailed study of Pontrjagin’s dualtiy theorem. A thorough presentation of the cohomology of profinite groups. A introduction to simple algebras. An extensive discussion of the various ray class groups, both in the divisor-theoretic and the idelic language. The presentation of local and global class field theory in the algebra-theoretic concept of H. Hasse. The study of holomorphy domains and their relevance for class field theory. Simple classical proofs of the functional equation for L functions both for number fields and function fields. A self-contained presentation of the theorems of representation theory needed for Artin L functions. Application of Artin L functions for arithmetical results.
Author | : Helmut Koch |
Publisher | : American Mathematical Soc. |
Total Pages | : 390 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 9780821820544 |
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.
Author | : Herbert Bruderer |
Publisher | : Springer Nature |
Total Pages | : 2072 |
Release | : 2021-01-04 |
Genre | : Computers |
ISBN | : 3030409740 |
This Third Edition is the first English-language edition of the award-winning Meilensteine der Rechentechnik; illustrated in full color throughout in two volumes. The Third Edition is devoted to both analog and digital computing devices, as well as the world's most magnificient historical automatons and select scientific instruments (employed in astronomy, surveying, time measurement, etc.). It also features detailed instructions for analog and digital mechanical calculating machines and instruments, and is the only such historical book with comprehensive technical glossaries of terms not found in print or in online dictionaries. The book also includes a very extensive bibliography based on the literature of numerous countries around the world. Meticulously researched, the author conducted a worldwide survey of science, technology and art museums with their main holdings of analog and digital calculating and computing machines and devices, historical automatons and selected scientific instruments in order to describe a broad range of masterful technical achievements. Also covering the history of mathematics and computer science, this work documents the cultural heritage of technology as well.
Author | : Ian Stewart |
Publisher | : CRC Press |
Total Pages | : 334 |
Release | : 2001-12-12 |
Genre | : Mathematics |
ISBN | : 143986408X |
First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it
Author | : Victor J. Katz |
Publisher | : Princeton University Press |
Total Pages | : 504 |
Release | : 2014-07-21 |
Genre | : Mathematics |
ISBN | : 0691149054 |
What is algebra? For some, it is an abstract language of x's and y’s. For mathematics majors and professional mathematicians, it is a world of axiomatically defined constructs like groups, rings, and fields. Taming the Unknown considers how these two seemingly different types of algebra evolved and how they relate. Victor Katz and Karen Parshall explore the history of algebra, from its roots in the ancient civilizations of Egypt, Mesopotamia, Greece, China, and India, through its development in the medieval Islamic world and medieval and early modern Europe, to its modern form in the early twentieth century. Defining algebra originally as a collection of techniques for determining unknowns, the authors trace the development of these techniques from geometric beginnings in ancient Egypt and Mesopotamia and classical Greece. They show how similar problems were tackled in Alexandrian Greece, in China, and in India, then look at how medieval Islamic scholars shifted to an algorithmic stage, which was further developed by medieval and early modern European mathematicians. With the introduction of a flexible and operative symbolism in the sixteenth and seventeenth centuries, algebra entered into a dynamic period characterized by the analytic geometry that could evaluate curves represented by equations in two variables, thereby solving problems in the physics of motion. This new symbolism freed mathematicians to study equations of degrees higher than two and three, ultimately leading to the present abstract era. Taming the Unknown follows algebra’s remarkable growth through different epochs around the globe.
Author | : Charles C Pinter |
Publisher | : Courier Corporation |
Total Pages | : 402 |
Release | : 2010-01-14 |
Genre | : Mathematics |
ISBN | : 0486474178 |
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Author | : H. P. F. Swinnerton-Dyer |
Publisher | : Cambridge University Press |
Total Pages | : 164 |
Release | : 2001-02-22 |
Genre | : Mathematics |
ISBN | : 9780521004237 |
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Author | : Władysław Narkiewicz |
Publisher | : Springer Science & Business Media |
Total Pages | : 659 |
Release | : 2011-09-02 |
Genre | : Mathematics |
ISBN | : 0857295322 |
The last one hundred years have seen many important achievements in the classical part of number theory. After the proof of the Prime Number Theorem in 1896, a quick development of analytical tools led to the invention of various new methods, like Brun's sieve method and the circle method of Hardy, Littlewood and Ramanujan; developments in topics such as prime and additive number theory, and the solution of Fermat’s problem. Rational Number Theory in the 20th Century: From PNT to FLT offers a short survey of 20th century developments in classical number theory, documenting between the proof of the Prime Number Theorem and the proof of Fermat's Last Theorem. The focus lays upon the part of number theory that deals with properties of integers and rational numbers. Chapters are divided into five time periods, which are then further divided into subject areas. With the introduction of each new topic, developments are followed through to the present day. This book will appeal to graduate researchers and student in number theory, however the presentation of main results without technicalities will make this accessible to anyone with an interest in the area.