The Schrodinger And Riccati Equations
Download The Schrodinger And Riccati Equations full books in PDF, epub, and Kindle. Read online free The Schrodinger And Riccati Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Serafin Fraga |
Publisher | : Springer |
Total Pages | : 248 |
Release | : 1999 |
Genre | : Computers |
ISBN | : |
The linear Schrödinger equation is central to Quantum Chemistry. It is presented within the context of relativistic Quantum Mechanics and analysed both in time-dependent and time-independent forms. The Riccati equation is used to study the one-dimensional Schrödinger equation. The authors develop the Schrödinger-Riccati equation as an approach to determine solutions of the time-independent, linear Schrödinger equation.
Author | : Dieter Schuch |
Publisher | : Springer |
Total Pages | : 261 |
Release | : 2018-01-20 |
Genre | : Science |
ISBN | : 3319655949 |
This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in a consistent mathematical description of physical laws.
Author | : Reid |
Publisher | : Academic Press |
Total Pages | : 227 |
Release | : 1972-08-22 |
Genre | : Computers |
ISBN | : 0080955959 |
Riccati Differential Equations
Author | : Peter Lancaster |
Publisher | : Clarendon Press |
Total Pages | : 502 |
Release | : 1995-09-07 |
Genre | : Mathematics |
ISBN | : 0191591254 |
This book provides a careful treatment of the theory of algebraic Riccati equations. It consists of four parts: the first part is a comprehensive account of necessary background material in matrix theory including careful accounts of recent developments involving indefinite scalar products and rational matrix functions. The second and third parts form the core of the book and concern the solutions of algebraic Riccati equations arising from continuous and discrete systems. The geometric theory and iterative analysis are both developed in detail. The last part of the book is an exciting collection of eight problem areas in which algebraic Riccati equations play a crucial role. These applications range from introductions to the classical linear quadratic regulator problems and the discrete Kalman filter to modern developments in HD*W*w control and total least squares methods.
Author | : Ondrej Dosly |
Publisher | : Elsevier |
Total Pages | : 533 |
Release | : 2005-07-06 |
Genre | : Mathematics |
ISBN | : 0080461239 |
The book presents a systematic and compact treatment of the qualitative theory of half-lineardifferential equations. It contains the most updated and comprehensive material and represents the first attempt to present the results of the rapidly developing theory of half-linear differential equations in a unified form. The main topics covered by the book are oscillation and asymptotic theory and the theory of boundary value problems associated with half-linear equations, but the book also contains a treatment of related topics like PDE's with p-Laplacian, half-linear difference equations and various more general nonlinear differential equations.- The first complete treatment of the qualitative theory of half-linear differential equations.- Comparison of linear and half-linear theory.- Systematic approach to half-linear oscillation and asymptotic theory.- Comprehensive bibliography and index.- Useful as a reference book in the topic.
Author | : Wu-Ming Liu |
Publisher | : Springer |
Total Pages | : 576 |
Release | : 2019-03-20 |
Genre | : Science |
ISBN | : 9811365814 |
This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrödinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures.
Author | : Sergio Bittanti |
Publisher | : Springer Science & Business Media |
Total Pages | : 346 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 3642582230 |
Conceived by Count Jacopo Francesco Riccati more than a quarter of a millennium ago, the Riccati equation has been widely studied in the subsequent centuries. Since its introduction in control theory in the sixties, the matrix Riccati equation has known an impressive range of applications, such as optimal control, H? optimization and robust stabilization, stochastic realization, synthesis of linear passive networks, to name but a few. This book consists of 11 chapters surveying the main concepts and results related to the matrix Riccati equation, both in continuous and discrete time. Theory, applications and numerical algorithms are extensively presented in an expository way. As a foreword, the history and prehistory of the Riccati equation is concisely presented.
Author | : Qi Lü |
Publisher | : American Mathematical Society |
Total Pages | : 120 |
Release | : 2024-03-18 |
Genre | : Mathematics |
ISBN | : 1470468751 |
Author | : Florentin Smarandache |
Publisher | : Infinite Study |
Total Pages | : 181 |
Release | : 2013 |
Genre | : Astrophysics |
ISBN | : 1599732548 |
The present book consists of 17 select scientific papers from ten years of work around 2003-2013. The topic covered here is quantization in Astrophysics. We also discuss other topics for instance Pioneer spacecraft anomaly. We discuss a number of sub-topics, for instance the use of Schrödinger equation to describe celestial quantization. Our basic proposition here is that the quantization of planetary systems corresponds to quantization of circulation as observed in superfluidity. And then we extend it further to the use of (complex) Ginzburg-Landau equation to describe possible nonlinearity of planetary quantization. The present book is suitable for young astronomers and astrophysicists as well as for professional astronomers who wish to update their knowledge in the vast topic of quantization in astrophysics. This book is also suitable for college students who want to know more about this subject.
Author | : Vladislav V. Kravchenko |
Publisher | : Springer Science & Business Media |
Total Pages | : 179 |
Release | : 2009-07-21 |
Genre | : Mathematics |
ISBN | : 3034600046 |
Pseudoanalytic function theory generalizes and preserves many crucial features of complex analytic function theory. The Cauchy-Riemann system is replaced by a much more general first-order system with variable coefficients which turns out to be closely related to important equations of mathematical physics. This relation supplies powerful tools for studying and solving Schrödinger, Dirac, Maxwell, Klein-Gordon and other equations with the aid of complex-analytic methods. The book is dedicated to these recent developments in pseudoanalytic function theory and their applications as well as to multidimensional generalizations. It is directed to undergraduates, graduate students and researchers interested in complex-analytic methods, solution techniques for equations of mathematical physics, partial and ordinary differential equations.