The Riemann Problem and Interaction of Waves in Gas Dynamics

The Riemann Problem and Interaction of Waves in Gas Dynamics
Author: Tong Zhang
Publisher: Longman Scientific and Technical
Total Pages: 296
Release: 1989
Genre: Science
ISBN:

This monograph on shock wave theory contains much original work previously unpublished in the West covering the scalar conservation law, one-dimensional isothermal flow in an ideal gas, one-dimensional adiabatic flow, and two-dimensional flow (which is yet little understood). Includes 189 line drawings. Annotation copyrighted by Book News, Inc., Portland, OR

The Two-Dimensional Riemann Problem in Gas Dynamics

The Two-Dimensional Riemann Problem in Gas Dynamics
Author: Jiequan Li
Publisher: Taylor & Francis
Total Pages: 311
Release: 2022-02-13
Genre: Mathematics
ISBN: 1351408895

The Riemann problem is the most fundamental problem in the entire field of non-linear hyperbolic conservation laws. Since first posed and solved in 1860, great progress has been achieved in the one-dimensional case. However, the two-dimensional case is substantially different. Although research interest in it has lasted more than a century, it has yielded almost no analytical demonstration. It remains a great challenge for mathematicians. This volume presents work on the two-dimensional Riemann problem carried out over the last 20 years by a Chinese group. The authors explore four models: scalar conservation laws, compressible Euler equations, zero-pressure gas dynamics, and pressure-gradient equations. They use the method of generalized characteristic analysis plus numerical experiments to demonstrate the elementary field interaction patterns of shocks, rarefaction waves, and slip lines. They also discover a most interesting feature for zero-pressure gas dynamics: a new kind of elementary wave appearing in the interaction of slip lines-a weighted Dirac delta shock of the density function. The Two-Dimensional Riemann Problem in Gas Dynamics establishes the rigorous mathematical theory of delta-shocks and Mach reflection-like patterns for zero-pressure gas dynamics, clarifies the boundaries of interaction of elementary waves, demonstrates the interesting spatial interaction of slip lines, and proposes a series of open problems. With applications ranging from engineering to astrophysics, and as the first book to examine the two-dimensional Riemann problem, this volume will prove fascinating to mathematicians and hold great interest for physicists and engineers.

The Riemann Problem for the Transportation Equations in Gas Dynamics

The Riemann Problem for the Transportation Equations in Gas Dynamics
Author: Wancheng Sheng
Publisher: American Mathematical Soc.
Total Pages: 93
Release: 1999
Genre: Mathematics
ISBN: 0821809474

In this volume, the one-dimensional and two-dimensional Riemann problems for the transportation equations in gas dynamics are solved constructively. In either the 1-D or 2-D case, there are only two kinds of solutions: one involves Dirac delta waves, and the other involves vacuums, which has been merely discussed so far. The generalized Rankine-Hugoniot and entropy conditions for Dirac delta waves are clarified with viscous vanishing method. All of the existence, uniqueness and stability for viscous perturbations are proved analytically

Advances in Kinetic Theory and Computing

Advances in Kinetic Theory and Computing
Author: B. Perthame
Publisher: World Scientific
Total Pages: 232
Release: 1994
Genre: Mathematics
ISBN: 9789810216719

This selection of 8 papers discusses ?Equations of Kinetic Physics? with emphasis on analysis, modelling and computing. The first 3 papers are on numerical methods for Vlasov-Poisson and Vlasov-Maxwell Equations ? Comparison between Particles and Eulerian Methods (G Manfredi and M R Feix), Computing BGK Instability with Eulerian Codes (M R Feix, Pertrand & A Ghieco) and Coupling Particles and Eulerian Methods (S Mas-Gallic and P A Raviart) ? Followed by a survey of kinetic and macroscopic models for semiconductor devices ? Boltzmann Equation, Drift-Diffusion Models (F Poupaud). In addition, there are 2 papers on the modelling and analysis of singular perturbation problems arising in plasma physics ? Derivation of the Child-Lagmuyr Emission Laws (P Degond) and Euler Models with Small Pressure Terms (F Bouchut) ? followed by two papers on the analysis and numerical analysis of the Boltzmann equations ? Symmetry Properties in the Polynomials Arising in Chapman-Enskog Expansion (L Desvillettes and F Golse) and A General Introduction to Computing the Boltzmann Equations with Random Particle Methods (B Perthame).

Generalized Riemann Problems in Computational Fluid Dynamics

Generalized Riemann Problems in Computational Fluid Dynamics
Author: Matania Ben-Artzi
Publisher: Cambridge University Press
Total Pages: 370
Release: 2003-04-10
Genre: Mathematics
ISBN: 9780521772969

Numerical simulation of compressible, inviscid time-dependent flow is a major branch of computational fluid dynamics. Its primary goal is to obtain accurate representation of the time evolution of complex flow patterns, involving interactions of shocks, interfaces, and rarefaction waves. The Generalized Riemann Problem (GRP) algorithm, developed by the authors for this purpose, provides a unifying 'shell' which comprises some of the most commonly used numerical schemes of this process. This monograph gives a systematic presentation of the GRP methodology, starting from the underlying mathematical principles, through basic scheme analysis and scheme extensions (such as reacting flow or two-dimensional flows involving moving or stationary boundaries). An array of instructive examples illustrates the range of applications, extending from (simple) scalar equations to computational fluid dynamics. Background material from mathematical analysis and fluid dynamics is provided, making the book accessible to both researchers and graduate students of applied mathematics, science and engineering.

Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws
Author: LEVEQUE
Publisher: Birkhäuser
Total Pages: 221
Release: 2013-11-11
Genre: Science
ISBN: 3034851162

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

Systems of Conservation Laws

Systems of Conservation Laws
Author: Yuxi Zheng
Publisher: Springer Science & Business Media
Total Pages: 324
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461201411

This work should serve as an introductory text for graduate students and researchers working in the important area of partial differential equations with a focus on problems involving conservation laws. The only requisite for the reader is a knowledge of the elementary theory of partial differential equations. Key features of this work include: * broad range of topics, from the classical treatment to recent results, dealing with solutions to 2D compressible Euler equations * good review of basic concepts (1-D Riemann problems) * concrete solutions presented, with many examples, over 100 illustrations, open problems, and numerical schemes * numerous exercises, comprehensive bibliography and index * appeal to a wide audience of applied mathematicians, graduate students, physicists, and engineers Written in a clear, accessible style, the book emphasizes more recent results that will prepare readers to meet modern challenges in the subject, that is, to carry out theoretical, numerical, and asymptotical analysis.

Handbook of Shock Waves, Three Volume Set

Handbook of Shock Waves, Three Volume Set
Author: Gabi Ben-Dor
Publisher: Elsevier
Total Pages: 2188
Release: 2000-10-18
Genre: Science
ISBN: 0080533728

The Handbook of Shock Waves contains a comprehensive, structured coverage of research topics related to shock wave phenomena including shock waves in gases, liquids, solids, and space. Shock waves represent an extremely important physical phenomena which appears to be of special practical importance in three major fields: compressible flow (aerodynamics), materials science, and astrophysics. Shock waves comprise a phenomenon that occurs when pressure builds to force a reaction, i.e. sonic boom that occurs when a jet breaks the speed of sound.This Handbook contains experimental, theoretical, and numerical results which never before appeared under one cover; the first handbook of its kind.The Handbook of Shock Waves is intended for researchers and engineers active in shock wave related fields. Additionally, R&D establishments, applied science & research laboratories and scientific and engineering libraries both in universities and government institutions. As well as, undergraduate and graduate students in fluid mechanics, gas dynamics, and physics. Key Features* Ben-Dor is known as one of the founders of the field of shock waves* Covers a broad spectrum of shock wave research topics* Provides a comprehensive description of various shock wave related subjects* First handbook ever to include under one separate cover: experimental, theoretical, and numerical results

Linear and Nonlinear Waves

Linear and Nonlinear Waves
Author: G. B. Whitham
Publisher: John Wiley & Sons
Total Pages: 660
Release: 2011-10-18
Genre: Science
ISBN: 1118031202

Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.

Relativistic Hydrodynamics

Relativistic Hydrodynamics
Author: Luciano Rezzolla
Publisher: OUP Oxford
Total Pages: 752
Release: 2013-09-26
Genre: Science
ISBN: 0191509914

Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solution of the equations, and over to the applications in modern physics and astrophysics. Numerous figures, diagrams, and a variety of exercises aid the material in the book. The most obvious applications of this work range from astrophysics (black holes, neutron stars, gamma-ray bursts, and active galaxies) to cosmology (early-universe hydrodynamics and phase transitions) and particle physics (heavy-ion collisions). It is often said that fluids are either seen as solutions of partial differential equations or as "wet". Fluids in this book are definitely wet, but the mathematical beauty of differential equations is not washed out.