The Real Projective Plane

The Real Projective Plane
Author: H.S.M. Coxeter
Publisher: Springer Science & Business Media
Total Pages: 236
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461227348

Along with many small improvements, this revised edition contains van Yzeren's new proof of Pascal's theorem (§1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (§3.34). This makes the logi cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non· Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of 'points at infinity' to be a conic, or replace the absolute involution by an absolute polarity.

The Real Projective Plane

The Real Projective Plane
Author: H.S.M. Coxeter
Publisher: Springer Science & Business Media
Total Pages: 248
Release: 1992-12-23
Genre: Mathematics
ISBN: 9780387978895

Along with many small improvements, this revised edition contains van Yzeren's new proof of Pascal's theorem (§1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (§3.34). This makes the logi cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non· Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of 'points at infinity' to be a conic, or replace the absolute involution by an absolute polarity.

Mathematical models

Mathematical models
Author: Gerd Fischer
Publisher: Informatica International, Incorporated
Total Pages: 118
Release: 1986
Genre: Mathematics
ISBN:

Perspectives on Projective Geometry

Perspectives on Projective Geometry
Author: Jürgen Richter-Gebert
Publisher: Springer Science & Business Media
Total Pages: 573
Release: 2011-02-04
Genre: Mathematics
ISBN: 3642172865

Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

Projective Geometry

Projective Geometry
Author: Albrecht Beutelspacher
Publisher: Cambridge University Press
Total Pages: 272
Release: 1998-01-29
Genre: Mathematics
ISBN: 9780521483643

Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.

Projective Geometry

Projective Geometry
Author: T. Ewan Faulkner
Publisher: Courier Corporation
Total Pages: 148
Release: 2013-02-20
Genre: Mathematics
ISBN: 0486154890

Highlighted by numerous examples, this book explores methods of the projective geometry of the plane. Examines the conic, the general equation of the 2nd degree, and the relationship between Euclidean and projective geometry. 1960 edition.

Projective Geometry

Projective Geometry
Author: Elisabetta Fortuna
Publisher: Springer
Total Pages: 275
Release: 2016-12-17
Genre: Mathematics
ISBN: 3319428241

This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of elementary Linear Algebra.

Modern Projective Geometry

Modern Projective Geometry
Author: Claude-Alain Faure
Publisher: Springer Science & Business Media
Total Pages: 370
Release: 2013-04-18
Genre: Mathematics
ISBN: 9401595909

This monograph develops projective geometries and provides a systematic treatment of morphisms. It introduces a new fundamental theorem and its applications describing morphisms of projective geometries in homogeneous coordinates by semilinear maps. Other topics treated include three equivalent definitions of projective geometries and their correspondence with certain lattices; quotients of projective geometries and isomorphism theorems; and recent results in dimension theory.

Projective Geometry

Projective Geometry
Author: H.S.M. Coxeter
Publisher: Springer Science & Business Media
Total Pages: 180
Release: 2003-10-09
Genre: Mathematics
ISBN: 9780387406237

In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.

Euler's Gem

Euler's Gem
Author: David S. Richeson
Publisher: Princeton University Press
Total Pages: 336
Release: 2019-07-23
Genre: Mathematics
ISBN: 0691191999

How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.