The Random Cluster Model On A Homogeneous Tree
Download The Random Cluster Model On A Homogeneous Tree full books in PDF, epub, and Kindle. Read online free The Random Cluster Model On A Homogeneous Tree ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Geoffrey R. Grimmett |
Publisher | : Springer Science & Business Media |
Total Pages | : 392 |
Release | : 2006-12-13 |
Genre | : Mathematics |
ISBN | : 3540328912 |
The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.
Author | : |
Publisher | : Elsevier |
Total Pages | : 337 |
Release | : 2000-09-15 |
Genre | : Science |
ISBN | : 0080538754 |
The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what might be called the modern geometricapproach to the properties of macroscopic systems. The first article by Georgii (et al.) describes how recent advances in the application ofgeometric ideas leads to a better understanding of pure phases and phase transitions in equilibrium systems. The second article by Alava (et al.)deals with geometrical aspects of multi-body systems in a hands-on way, going beyond abstract theory to obtain practical answers. Thecombination of computers and geometrical ideas described in this volume will doubtless play a major role in the development of statisticalmechanics in the twenty-first century.
Author | : Harry Kesten |
Publisher | : Springer Science & Business Media |
Total Pages | : 358 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 3662094444 |
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.
Author | : Utkir A. Rozikov |
Publisher | : World Scientific |
Total Pages | : 404 |
Release | : 2013 |
Genre | : Mathematics |
ISBN | : 9814513385 |
The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy. The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently.
Author | : Utkir A Rozikov |
Publisher | : World Scientific |
Total Pages | : 367 |
Release | : 2022-07-28 |
Genre | : Mathematics |
ISBN | : 9811251258 |
This book presents recently obtained mathematical results on Gibbs measures of the q-state Potts model on the integer lattice and on Cayley trees. It also illustrates many applications of the Potts model to real-world situations in biology, physics, financial engineering, medicine, and sociology, as well as in some examples of alloy behavior, cell sorting, flocking birds, flowing foams, and image segmentation.Gibbs measure is one of the important measures in various problems of probability theory and statistical mechanics. It is a measure associated with the Hamiltonian of a biological or physical system. Each Gibbs measure gives a state of the system.The main problem for a given Hamiltonian on a countable lattice is to describe all of its possible Gibbs measures. The existence of some values of parameters at which the uniqueness of Gibbs measure switches to non-uniqueness is interpreted as a phase transition.This book informs the reader about what has been (mathematically) done in the theory of Gibbs measures of the Potts model and the numerous applications of the Potts model. The main aim is to facilitate the readers (in mathematical biology, statistical physics, applied mathematics, probability and measure theory) to progress into an in-depth understanding by giving a systematic review of the theory of Gibbs measures of the Potts model and its applications.
Author | : Geoffrey Grimmett |
Publisher | : Cambridge University Press |
Total Pages | : 279 |
Release | : 2018-01-25 |
Genre | : Mathematics |
ISBN | : 1108542999 |
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.
Author | : Jaroslav Nešetřil |
Publisher | : American Mathematical Soc. |
Total Pages | : 218 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 0821835513 |
Based on a March 2001 workshop, this collection explores connections between random graphs and percolation, between slow mixing and phase transition, and between graph morphisms and hard-constraint models. Topics of the 14 papers include efficient local search near phase transitions in combinatorial optimization, graph homomorphisms and long range action, recent results on parameterized H-colorings, the satisfiability of random k-Horn formulae, a discrete non-Pfaffian approach to the Ising problem, and chromatic numbers of products of tournaments. No indexes are provided. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).
Author | : Geoffrey R. Grimmett |
Publisher | : Springer Science & Business Media |
Total Pages | : 459 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3662039818 |
Percolation theory is the study of an idealized random medium in two or more dimensions. The emphasis of this book is upon core mathematical material and the presentation of the shortest and most accessible proofs. Much new material appears in this second edition including dynamic and static renormalization, strict inequalities between critical points, a sketch of the lace expansion, and several essays on related fields and applications.
Author | : Cyril Domb |
Publisher | : |
Total Pages | : 346 |
Release | : 2001 |
Genre | : Critical phenomena (Physics) |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 772 |
Release | : 2004 |
Genre | : Markov processes |
ISBN | : |