The Radon Transform and Local Tomography

The Radon Transform and Local Tomography
Author: Alexander G. Ramm
Publisher: CRC Press
Total Pages: 516
Release: 2020-07-16
Genre: Mathematics
ISBN: 1000151778

Over the past decade, the field of image processing has made tremendous advances. One type of image processing that is currently of particular interest is "tomographic imaging," a technique for computing the density function of a body, or discontinuity surfaces of this function. Today, tomography is widely used, and has applications in such fields as medicine, engineering, physics, geophysics, and security. The Radon Transform and Local Tomography clearly explains the theoretical, computational, and practical aspects of applied tomography. It includes sufficient background information to make it essentially self-contained for most readers.

The Radon Transform and Local Tomography

The Radon Transform and Local Tomography
Author: Alexander G. Ramm
Publisher: CRC Press
Total Pages: 512
Release: 2020-07-16
Genre: Mathematics
ISBN: 1000108627

Over the past decade, the field of image processing has made tremendous advances. One type of image processing that is currently of particular interest is "tomographic imaging," a technique for computing the density function of a body, or discontinuity surfaces of this function. Today, tomography is widely used, and has applications in such fields as medicine, engineering, physics, geophysics, and security. The Radon Transform and Local Tomography clearly explains the theoretical, computational, and practical aspects of applied tomography. It includes sufficient background information to make it essentially self-contained for most readers.

The Radon Transform

The Radon Transform
Author: Sigurdur Helgason
Publisher: Springer Science & Business Media
Total Pages: 214
Release: 1999-08-01
Genre: Mathematics
ISBN: 9780817641092

The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.

Radon Transforms and Tomography

Radon Transforms and Tomography
Author: Eric Todd Quinto
Publisher: American Mathematical Soc.
Total Pages: 274
Release: 2001
Genre: Mathematics
ISBN: 0821821350

One of the most exciting features of the fields of Radon transforms and tomography is the strong relationship between high-level pure mathematics and applications to areas such as medical imaging and industrial nondestructive evaluation. The proceedings featured in this volume bring together fundamental research articles in the major areas of Radon transforms and tomography. This volume includes expository papers that are of special interest to beginners as well as advanced researchers. Topics include local tomography and wavelets, Lambda tomography and related methods, tomographic methods in RADAR, ultrasound, Radon transforms and differential equations, and the Pompeiu problem. The major themes in Radon transforms and tomography are represented among the research articles. Pure mathematical themes include vector tomography, microlocal analysis, twistor theory, Lie theory, wavelets, harmonic analysis, and distribution theory. The applied articles employ high-quality pure mathematics to solve important practical problems. Effective scanning geometries are developed and tested for a NASA wind tunnel. Algorithms for limited electromagnetic tomographic data and for impedance imaging are developed and tested. Range theorems are proposed to diagnose problems with tomography scanners. Principles are given for the design of X-ray tomography reconstruction algorithms, and numerical examples are provided. This volume offers readers a comprehensive source of fundamental research useful to both beginners and advanced researchers in the fields.

The Radon Transform

The Radon Transform
Author: Ronny Ramlau
Publisher: de Gruyter
Total Pages: 0
Release: 2019
Genre: Mathematics
ISBN: 9783110559415

In 1917, Johann Radon published his fundamental work, where he introduced what is now called the Radon transform. Including important contributions by several experts, this book reports on ground-breaking developments related to the Radon transform

The Radon Transform and Medical Imaging

The Radon Transform and Medical Imaging
Author: Peter Kuchment
Publisher: SIAM
Total Pages: 238
Release: 2014-01-01
Genre: Computers
ISBN: 1611973295

This book surveys the main mathematical ideas and techniques behind some well-established imaging modalities such as X-ray CT and emission tomography, as well as a variety of newly developing coupled-physics or hybrid techniques, including thermoacoustic tomography. The Radon Transform and Medical Imaging emphasizes mathematical techniques and ideas arising across the spectrum of medical imaging modalities and explains important concepts concerning inversion, stability, incomplete data effects, the role of interior information, and other issues critical to all medical imaging methods. For nonexperts, the author provides appendices that cover background information on notation, Fourier analysis, geometric rays, and linear operators. The vast bibliography, with over 825 entries, directs readers to a wide array of additional information sources on medical imaging for further study.

The Radon Transform, Inverse Problems, and Tomography

The Radon Transform, Inverse Problems, and Tomography
Author: Gestur Ólafsson
Publisher: American Mathematical Soc.
Total Pages: 176
Release: 2006
Genre: Mathematics
ISBN: 0821839306

Since their emergence in 1917, tomography and inverse problems remain active and important fields that combine pure and applied mathematics and provide strong interplay between diverse mathematical problems and applications. The applied side is best known for medical and scientific use, in particular, medical imaging, radiotherapy, and industrial non-destructive testing. Doctors use tomography to see the internal structure of the body or to find functional information, such asmetabolic processes, noninvasively. Scientists discover defects in objects, the topography of the ocean floor, and geological information using X-rays, geophysical measurements, sonar, or other data. This volume, based on the lectures in the Short Course The Radon Transform and Applications to InverseProblems at the American Mathematical Society meeting in Atlanta, GA, January 3-4, 2005, brings together articles on mathematical aspects of tomography and related inverse problems. The articles cover introductory material, theoretical problems, and practical issues in 3-D tomography, impedance imaging, local tomography, wavelet methods, regularization and approximate inverse, sampling, and emission tomography. All contributions are written for a general audience, and the authors have includedreferences for further reading.

The Universality of the Radon Transform

The Universality of the Radon Transform
Author: Leon Ehrenpreis
Publisher: OUP Oxford
Total Pages: 740
Release: 2003-10-02
Genre: Mathematics
ISBN: 0191523267

Written by a leading scholar in mathematics, this monograph discusses the Radon transform, a field that has wide ranging applications to X-ray technology, partial differential equations, nuclear magnetic resonance scanning, and tomography. In this book, Ehrenpreis focuses on recent research and highlights the strong relationship between high-level pure mathematics and applications of the Radon transform to areas such as medical imaging. The first part of the book discusses parametric and nonparametric Radon transforms, Harmonic Functions and Radon transform on Algebraic Varieties, nonlinear Radon and Fourier transforms, Radon transform on groups, and Radon transform as the interrelation of geometry and analysis. The later parts discuss the extension of solutions of differential equations, Periods of Eisenstein and Poincaré, and some problems of integral geometry arising in tomography. Examples and proofs are provided throughout the book to aid the reader's understanding. This is the latest title in the Oxford Mathematical Monographs, which includes texts and monographs covering many topics of current research interest in pure and applied mathematics. Other titles include: Carbone and Semmes: A graphic apology for symmetry and implicitness; Higson and Roe: Analytic K-Homology; Iwaniec and Martin: Geometric Function Theory and Nonlinear Analysis; Lyons and Qian: System Control and Rough Paths. Also new in paperback Johnson and Lapidus: The Feynman Integral and Feynman's Operational Calculus; Donaldson and Kronheimer: The geometry of four-manifolds.

Integral Geometry and Tomography

Integral Geometry and Tomography
Author: Andrew Markoe
Publisher: American Mathematical Soc.
Total Pages: 176
Release: 2006
Genre: Mathematics
ISBN: 0821837559

This volume consists of a collection of papers that brings together fundamental research in Radon transforms, integral geometry, and tomography. It grew out of the Special Session at a Sectional Meeting of the American Mathematical Society in 2004. The book contains very recent work of some of the top researchers in the field. The articles in the book deal with the determination of properties of functions on a manifold by integral theoretic methods, or by determining the geometricstructure of subsets of a manifold by analytic methods. Of particular concern are ways of reconstructing an unknown function from some of its projections. Radon transforms were developed at the beginning of the twentieth century by researchers who were motivated by problems in differential geometry,mathematical physics, and partial differential equations. Later, medical applications of these transforms produced breakthroughs in imaging technology that resulted in the 1979 Nobel Prize in Physiology and Medicine for the development of computerized tomography. Today the subject boasts substantial cross-disciplinary interactions, both in pure and applied mathematics as well as medicine, engineering, biology, physics, geosciences, and industrial testing. Therefore, this volume should be ofinterest to a wide spectrum of researchers both in mathematics and in other fields.

Transforms and Applications Handbook

Transforms and Applications Handbook
Author: Alexander D. Poularikas
Publisher: CRC Press
Total Pages: 911
Release: 2018-09-03
Genre: Mathematics
ISBN: 1420066536

Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field.