The Practical Handbook Of Genetic Algorithms
Download The Practical Handbook Of Genetic Algorithms full books in PDF, epub, and Kindle. Read online free The Practical Handbook Of Genetic Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Lance D. Chambers |
Publisher | : CRC Press |
Total Pages | : 438 |
Release | : 2019-09-17 |
Genre | : Mathematics |
ISBN | : 1420050079 |
The mathematics employed by genetic algorithms (GAs)are among the most exciting discoveries of the last few decades. But what exactly is a genetic algorithm? A genetic algorithm is a problem-solving method that uses genetics as its model of problem solving. It applies the rules of reproduction, gene crossover, and mutation to pseudo-organism
Author | : Lawrence Davis |
Publisher | : Van Nostrand Reinhold Company |
Total Pages | : 406 |
Release | : 1991 |
Genre | : Mathematics |
ISBN | : |
Author | : Lance D. Chambers |
Publisher | : CRC Press |
Total Pages | : 602 |
Release | : 2019-09-17 |
Genre | : Mathematics |
ISBN | : 9781420050080 |
Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems contains computer-code examples for the development of genetic algorithm systems - compiling them from an array of practitioners in the field. Each contribution of this singular resource includes: unique code segments documentation descripti
Author | : Lance D. Chambers |
Publisher | : CRC Press |
Total Pages | : 442 |
Release | : 2019-09-17 |
Genre | : Mathematics |
ISBN | : 9781420050073 |
The mathematics employed by genetic algorithms (GAs)are among the most exciting discoveries of the last few decades. But what exactly is a genetic algorithm? A genetic algorithm is a problem-solving method that uses genetics as its model of problem solving. It applies the rules of reproduction, gene crossover, and mutation to pseudo-organism
Author | : Stephan Olariu |
Publisher | : CRC Press |
Total Pages | : 684 |
Release | : 2005-09-29 |
Genre | : Computers |
ISBN | : 1420035061 |
The mystique of biologically inspired (or bioinspired) paradigms is their ability to describe and solve complex relationships from intrinsically very simple initial conditions and with little or no knowledge of the search space. Edited by two prominent, well-respected researchers, the Handbook of Bioinspired Algorithms and Applications reveals the
Author | : Melanie Mitchell |
Publisher | : MIT Press |
Total Pages | : 226 |
Release | : 1998-03-02 |
Genre | : Computers |
ISBN | : 9780262631853 |
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Author | : John H. Holland |
Publisher | : MIT Press |
Total Pages | : 236 |
Release | : 1992-04-29 |
Genre | : Psychology |
ISBN | : 9780262581110 |
Genetic algorithms are playing an increasingly important role in studies of complex adaptive systems, ranging from adaptive agents in economic theory to the use of machine learning techniques in the design of complex devices such as aircraft turbines and integrated circuits. Adaptation in Natural and Artificial Systems is the book that initiated this field of study, presenting the theoretical foundations and exploring applications. In its most familiar form, adaptation is a biological process, whereby organisms evolve by rearranging genetic material to survive in environments confronting them. In this now classic work, Holland presents a mathematical model that allows for the nonlinearity of such complex interactions. He demonstrates the model's universality by applying it to economics, physiological psychology, game theory, and artificial intelligence and then outlines the way in which this approach modifies the traditional views of mathematical genetics. Initially applying his concepts to simply defined artificial systems with limited numbers of parameters, Holland goes on to explore their use in the study of a wide range of complex, naturally occuring processes, concentrating on systems having multiple factors that interact in nonlinear ways. Along the way he accounts for major effects of coadaptation and coevolution: the emergence of building blocks, or schemata, that are recombined and passed on to succeeding generations to provide, innovations and improvements.
Author | : D. Dumitrescu |
Publisher | : CRC Press |
Total Pages | : 424 |
Release | : 2000-06-22 |
Genre | : Computers |
ISBN | : 9780849305887 |
Rapid advances in evolutionary computation have opened up a world of applications-a world rapidly growing and evolving. Decision making, neural networks, pattern recognition, complex optimization/search tasks, scheduling, control, automated programming, and cellular automata applications all rely on evolutionary computation. Evolutionary Computation presents the basic principles of evolutionary computing: genetic algorithms, evolution strategies, evolutionary programming, genetic programming, learning classifier systems, population models, and applications. It includes detailed coverage of binary and real encoding, including selection, crossover, and mutation, and discusses the (m+l) and (m,l) evolution strategy principles. The focus then shifts to applications: decision strategy selection, training and design of neural networks, several approaches to pattern recognition, cellular automata, applications of genetic programming, and more.
Author | : Sue Ellen Haupt |
Publisher | : Springer Science & Business Media |
Total Pages | : 418 |
Release | : 2008-11-28 |
Genre | : Science |
ISBN | : 1402091192 |
How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.
Author | : |
Publisher | : Lulu.com |
Total Pages | : 252 |
Release | : 2008 |
Genre | : Computers |
ISBN | : 1409200736 |
Genetic programming (GP) is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until high-fitness solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. This unique overview of this exciting technique is written by three of the most active scientists in GP. See www.gp-field-guide.org.uk for more information on the book.