The Nonlinear Theory of Elastic Shells

The Nonlinear Theory of Elastic Shells
Author: A. Libai
Publisher: Cambridge University Press
Total Pages: 564
Release: 2005-12-15
Genre: Science
ISBN: 9780521019767

Elastic shells are pervasive in everyday life. Examples of these thin-walled structures range from automobile hoods to basketballs, veins and arteries, and soft drink cans. This book explains shell theory, with numerous examples and applications. This second edition not only brings all the material of the first edition entirely up to date; it also adds two entirely new chapters on general shell theory and general membrane theory. Aerospace, mechanical, and civil engineers, as well as applied mathematicians, will find this book a clearly written and thorough information source on shell theory.

The Nonlinear Theory of Elastic Shells

The Nonlinear Theory of Elastic Shells
Author: A. Libai
Publisher: Elsevier
Total Pages: 429
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0323150810

The Nonlinear Theory of Elastic Shells: One Spatial Dimension presents the foundation for the nonlinear theory of thermoelastic shells undergoing large strains and large rotations. This book discusses several relatively simple equations for practical application. Organized into six chapters, this book starts with an overview of the description of nonlinear elastic shell. This text then discusses the foundation of three-dimensional continuum mechanics that are relevant to the shell theory approach. Other chapters cover several topics, including birods, beamshells, and axishells that begins with a derivation of the equations of motion by a descent from the equations of balance of linear and rotational momentum of a three-dimensional material continuum. This book discusses as well the approach to deriving complete field equations for one- or two-dimensional continua from the integral equations of motion and thermodynamics of a three-dimensional continuum. The final chapter deals with the analysis of unishells. This book is a valuable resource for physicists, mathematicians, and scientists.

Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies

Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies
Author: Leonid M. Zubov
Publisher: Springer Science & Business Media
Total Pages: 207
Release: 2008-09-11
Genre: Science
ISBN: 3540684301

The author applies methods of nonlinear elasticity to investigate the defects in the crystal structure of solids such as dislocations and disclinations that characterize the plastic and strength properties of many materials. Contrary to the geometrically motivated nonlinear theory of dislocations continuously distributed over the body, nonlinear analysis of isolated dislocations and disclinations is less developed; it is given for the first time in this book, and in a form accessible to both students and researchers. The general theory of Volterra's dislocations in elastic media under large deformations is developed. A number of exact solutions are found. The nonlinear approach to investigating the isolated defects produces results that often differ qualitatively from those of the linear theory.

Flexible Shells

Flexible Shells
Author: E. L. Axelrad
Publisher: Springer Science & Business Media
Total Pages: 290
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3642480136

Euromech-Colloquium Nr. 165 The shell-theory development has changed its emphasis during the last two decades. Nonlinear problems have become its main motive. But the analysis was until recently predominantly devoted to shells designed for strength and stiffness. Nonlinearity is here relevant to buckling, to intensively vary able stress states. These are (with exception of some limit cases) covered by the quasi-shallow shell theory. The emphasis of the nonlinear analysis begins to shift further - to shells which are designed for and actually capable of large elastic displacements. These shells, used in industry for over a century, have been recently termedj1exible shells. The European Mechanics Colloquium 165. was concerned with the theory of elastic shells in connection with its applications to these shells. The Colloquium was intended to discuss: 1. The formulations of the nonlinear shell theory, different in the generality of kine matic hypothesis, and in the choice of dependent variables. 2. The specialization of the shell theory for the class of shells and the respective elastic stress states assuring flexibility. 3. Possibilities to deal with the complications of the buckling analysis of flexible shells, caused by the precritial perturbations of their shape and stress state. 4. Methods of solution appropriate for the nonlinear flexible-shell problems. 5. Applications of the theory. There were 71 participants the sessions were presided over (in that order) by E. Reissner, J. G. Simmonds, W. T. Koiter, R. C. Tennyson, F. A. Emmerling, E. Rarnm, E. L. Axelrad.

Elasticity and Geometry

Elasticity and Geometry
Author: Basile Audoly
Publisher: Oxford University Press
Total Pages: 597
Release: 2010-06-24
Genre: Mathematics
ISBN: 0198506252

We experience elasticity everywhere in everyday life. This book covers several modern aspects of the established field of elasticity theory, applying general methods of classical analysis including advanced nonlinear aspects to derive detailed solutions to specific problems. It can serve as an introduction to nonlinear methods in science.

Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials

Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials
Author: Marco Amabili
Publisher: Cambridge University Press
Total Pages: 585
Release: 2018-11
Genre: Mathematics
ISBN: 1107129222

This book guides the reader into the modelling of shell structures in applications where advanced composite materials or complex biological materials must be described with great accuracy. A valuable resource for researchers, professionals and graduate students, it presents a variety of practical concepts, diagrams and numerical results.

Nonlinear Problems of Elasticity

Nonlinear Problems of Elasticity
Author: Stuart Antman
Publisher: Springer Science & Business Media
Total Pages: 762
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475741472

The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.

Three-Dimensional Elasticity

Three-Dimensional Elasticity
Author: Philippe G. Ciarlet
Publisher: Elsevier
Total Pages: 500
Release: 1994-01-19
Genre: Mathematics
ISBN: 9780444817761

This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.