A Problem Seminar

A Problem Seminar
Author: D.J. Newman
Publisher: Springer Science & Business Media
Total Pages: 118
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461382149

There was once a bumper sticker that read, "Remember the good old days when air was clean and sex was dirty?" Indeed, some of us are old enough to remember not only those good old days, but even the days when Math was/un(!), not the ponderous THEOREM, PROOF, THEOREM, PROOF, . . . , but the whimsical, "I've got a good prob lem. " Why did the mood change? What misguided educational philoso phy transformed graduate mathematics from a passionate activity to a form of passive scholarship? In less sentimental terms, why have the graduate schools dropped the Problem Seminar? We therefore offer "A Problem Seminar" to those students who haven't enjoyed the fun and games of problem solving. CONTENTS Preface v Format I Problems 3 Estimation Theory 11 Generating Functions 17 Limits of Integrals 19 Expectations 21 Prime Factors 23 Category Arguments 25 Convexity 27 Hints 29 Solutions 41 FORMAT This book has three parts: first, the list of problems, briefly punctuated by some descriptive pages; second, a list of hints, which are merely meant as words to the (very) wise; and third, the (almost) complete solutions. Thus, the problems can be viewed on any of three levels: as somewhat difficult challenges (without the hints), as more routine problems (with the hints), or as a textbook on "how to solve it" (when the solutions are read). Of course it is our hope that the book can be enjoyed on any of these three levels.

Seminar on the Atiyah-Singer Index Theorem

Seminar on the Atiyah-Singer Index Theorem
Author: Michael Francis Atiyah
Publisher: Princeton University Press
Total Pages: 384
Release: 1965-09-21
Genre: Mathematics
ISBN: 9780691080314

A classic treatment of the Atiyah-Singer index theorem from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.

Magical Mathematics

Magical Mathematics
Author: Persi Diaconis
Publisher: Princeton University Press
Total Pages: 258
Release: 2015-10-13
Genre: Crafts & Hobbies
ISBN: 0691169772

"Magical Mathematics reveals the secrets of amazing, fun-to-perform card tricks--and the profound mathematical ideas behind them--that will astound even the most accomplished magician. Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge. For example, the Gilbreath principle--a fantastic effect where the cards remain in control despite being shuffled--is found to share an intimate connection with the Mandelbrot set. Other card tricks link to the mathematical secrets of combinatorics, graph theory, number theory, topology, the Riemann hypothesis, and even Fermat's last theorem. Diaconis and Graham are mathematicians as well as skilled performers with decades of professional experience between them. In this book they share a wealth of conjuring lore, including some closely guarded secrets of legendary magicians. Magical Mathematics covers the mathematics of juggling and shows how the I Ching connects to the history of probability and magic tricks both old and new. It tells the stories--and reveals the best tricks--of the eccentric and brilliant inventors of mathematical magic. Magical Mathematics exposes old gambling secrets through the mathematics of shuffling cards, explains the classic street-gambling scam of three-card monte, traces the history of mathematical magic back to the thirteenth century and the oldest mathematical trick--and much more"-

Geometry of Continued Fractions

Geometry of Continued Fractions
Author: Oleg Karpenkov
Publisher: Springer Science & Business Media
Total Pages: 409
Release: 2013-08-15
Genre: Mathematics
ISBN: 3642393683

Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.

Mathematics and Democracy

Mathematics and Democracy
Author: Steven J. Brams
Publisher: Princeton University Press
Total Pages: 390
Release: 2009-12-02
Genre: Science
ISBN: 1400835593

Voters today often desert a preferred candidate for a more viable second choice to avoid wasting their vote. Likewise, parties to a dispute often find themselves unable to agree on a fair division of contested goods. In Mathematics and Democracy, Steven Brams, a leading authority in the use of mathematics to design decision-making processes, shows how social-choice and game theory could make political and social institutions more democratic. Using mathematical analysis, he develops rigorous new procedures that enable voters to better express themselves and that allow disputants to divide goods more fairly. One of the procedures that Brams proposes is "approval voting," which allows voters to vote for as many candidates as they like or consider acceptable. There is no ranking, and the candidate with the most votes wins. The voter no longer has to consider whether a vote for a preferred but less popular candidate might be wasted. In the same vein, Brams puts forward new, more equitable procedures for resolving disputes over divisible and indivisible goods.

Number Theory and Discrete Mathematics

Number Theory and Discrete Mathematics
Author: A.K. Agarwal
Publisher: Birkhäuser
Total Pages: 314
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034882238

To mark the World Mathematical Year 2000 an International Conference on Number Theory and Discrete Mathematics in honour of the legendary Indian Mathematician Srinivasa Ramanuj~ was held at the centre for Advanced study in Mathematics, Panjab University, Chandigarh, India during October 2-6, 2000. This volume contains the proceedings of that conference. In all there were 82 participants including 14 overseas participants from Austria, France, Hungary, Italy, Japan, Korea, Singapore and the USA. The conference was inaugurated by Prof. K. N. Pathak, Hon. Vice-Chancellor, Panjab University, Chandigarh on October 2, 2000. Prof. Bruce C. Berndt of the University of Illinois, Urbana Chaimpaign, USA delivered the key note address entitled "The Life, Notebooks and Mathematical Contributions of Srinivasa Ramanujan". He described Ramanujan--as one of this century's most influential Mathematicians. Quoting Mark K. ac, Prof. George E. Andrews of the Pennsylvania State University, USA, in his message for the conference, described Ramanujan as a "magical genius". During the 5-day deliberations invited speakers gave talks on various topics in number theory and discrete mathematics. We mention here a few of them just as a sampling: • M. Waldschmidt, in his article, provides a very nice introduction to the topic of multiple poly logarithms and their special values. • C.

The Mathematics of the Bose Gas and its Condensation

The Mathematics of the Bose Gas and its Condensation
Author: Elliott H. Lieb
Publisher: Springer Science & Business Media
Total Pages: 204
Release: 2006-01-17
Genre: Science
ISBN: 3764373377

This book contains a unique survey of the mathematically rigorous results about the quantum-mechanical many-body problem that have been obtained by the authors in the past seven years. It addresses a topic that is not only rich mathematically, using a large variety of techniques in mathematical analysis, but is also one with strong ties to current experiments on ultra-cold Bose gases and Bose-Einstein condensation. The book provides a pedagogical entry into an active area of ongoing research for both graduate students and researchers. It is an outgrowth of a course given by the authors for graduate students and post-doctoral researchers at the Oberwolfach Research Institute in 2004. The book also provides a coherent summary of the field and a reference for mathematicians and physicists active in research on quantum mechanics.

Making Math Workshop Work

Making Math Workshop Work
Author: Middle School Math Man
Publisher:
Total Pages: 66
Release: 2018-12-31
Genre:
ISBN: 9781724919977

Are you looking to find a way to reach all of your students every day? Teacher and education blogger, Alex O'Connor, shares his practical, classroom-tested strategies to implement math workshop in the classroom. This book includes everything you need to get math workshop started in your classroom.

Building Thinking Classrooms in Mathematics, Grades K-12

Building Thinking Classrooms in Mathematics, Grades K-12
Author: Peter Liljedahl
Publisher: Corwin Press
Total Pages: 454
Release: 2020-09-28
Genre: Education
ISBN: 1544374844

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.