The Many Faces of Maxwell, Dirac and Einstein Equations

The Many Faces of Maxwell, Dirac and Einstein Equations
Author: Waldyr A. Rodrigues, Jr
Publisher: Springer
Total Pages: 592
Release: 2016-04-26
Genre: Science
ISBN: 3319276379

This book is an exposition of the algebra and calculus of differential forms, of the Clifford and Spin-Clifford bundle formalisms, and of vistas to a formulation of important concepts of differential geometry indispensable for an in-depth understanding of space-time physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields are shown to have representatives by objects of the same mathematical nature, namely sections of an appropriate Clifford bundle. This approach reveals unity in diversity and suggests relationships that are hidden in the standard formalisms and opens new paths for research. This thoroughly revised second edition also adds three new chapters: on the Clifford bundle approach to the Riemannian or semi-Riemannian differential geometry of branes; on Komar currents in the context of the General Relativity theory; and an analysis of the similarities and main differences between Dirac, Majorana and ELKO spinor fields. The exercises with solutions, the comprehensive list of mathematical symbols, and the list of acronyms and abbreviations are provided for self-study for students as well as for classes. From the reviews of the first edition: “The text is written in a very readable manner and is complemented with plenty of worked-out exercises which are in the style of extended examples. ... their book could also serve as a textbook for graduate students in physics or mathematics." (Alberto Molgado, Mathematical Reviews, 2008 k)

The Many Faces of Maxwell, Dirac and Einstein Equations

The Many Faces of Maxwell, Dirac and Einstein Equations
Author: Waldyr A. Rodrigues
Publisher: Springer Science & Business Media
Total Pages: 452
Release: 2007-07-03
Genre: Mathematics
ISBN: 3540712925

This book is a comprehensive reference on differential geometry. It shows that Maxwell, Dirac and Einstein fields, which were originally considered objects of a very different mathematical nature, have representatives as objects of the same mathematical nature. The book also analyzes some foundational issues of relativistic field theories. All calculation procedures are illustrated by many exercises that are solved in detail.

The Many Faces of Maxwell, Dirac and Einstein Equations

The Many Faces of Maxwell, Dirac and Einstein Equations
Author: Waldyr A. Rodrigues
Publisher: Springer
Total Pages: 445
Release: 2009-09-02
Genre: Mathematics
ISBN: 9783540836209

This book is a comprehensive reference on differential geometry. It shows that Maxwell, Dirac and Einstein fields, which were originally considered objects of a very different mathematical nature, have representatives as objects of the same mathematical nature. The book also analyzes some foundational issues of relativistic field theories. All calculation procedures are illustrated by many exercises that are solved in detail.

The Many Faces of Maxwell, Dirac and Einstein Equations

The Many Faces of Maxwell, Dirac and Einstein Equations
Author: Waldyr A. Rodrigues
Publisher:
Total Pages: 0
Release: 2007
Genre: Global analysis (Mathematics)
ISBN: 9788354071297

This book is a thoughtful exposition of the algebra and calculus of differential forms, the Clifford and Spin-Clifford bundles formalisms with emphasis in calculation procedures, and vistas to a formulation of some important concepts of differential geometry necessary for a deep understanding of spacetime physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields, which were originally considered objects of a very different mathematical nature, are shown to have representatives as objects of the same mathematical nature, i.e. as sections of an appropriate Clifford bundle. This approach reveals unity in the diversity and also the many faces of the equations satisfied by those fields. Moreover, it suggests relationships which are hidden in the standard formalisms and new paths for research. Some foundational issues of relativistic field theories, in particular the one concerning the conditions for the existence of the conservation laws of energy-momentum and angular momentum in spacetime theories and many misconceptions concerning this issue is analyzed in details. The book will be useful as reference book for researchers and advanced students of theoretical physics and mathematics. Calculation procedures are illustrated by many exercises solved in detail, using the "tricks of the trade". Furthermore the readers will appreciate the comprehensive list of mathematical symbols as well as a list of acronyms and abbreviations.

The Physical and Mathematical Foundations of the Theory of Relativity

The Physical and Mathematical Foundations of the Theory of Relativity
Author: Antonio Romano
Publisher: Springer Nature
Total Pages: 499
Release: 2019-09-25
Genre: Science
ISBN: 3030272370

This unique textbook offers a mathematically rigorous presentation of the theory of relativity, emphasizing the need for a critical analysis of the foundations of general relativity in order to best study the theory and its implications. The transitions from classical mechanics to special relativity and then to general relativity are explored in detail as well, helping readers to gain a more profound and nuanced understanding of the theory as a whole. After reviewing the fundamentals of differential geometry and classical mechanics, the text introduces special relativity, first using the physical approach proposed by Einstein and then via Minkowski’s mathematical model. The authors then address the relativistic thermodynamics of continua and electromagnetic fields in matter – topics which are normally covered only very briefly in other treatments – in the next two chapters. The text then turns to a discussion of general relativity by means of the authors’ unique critical approach, underlining the difficulty of recognizing the physical meaning of some statements, such as the physical meaning of coordinates and the derivation of physical quantities from those of space-time. Chapters in this section cover the model of space-time proposed by Schwarzschild; black holes; the Friedman equations and the different cosmological models they describe; and the Fermi-Walker derivative. Well-suited for graduate students in physics and mathematics who have a strong foundation in real analysis, classical mechanics, and general physics, this textbook is appropriate for a variety of graduate-level courses that cover topics in relativity. Additionally, it will interest physicists and other researchers who wish to further study the subtleties of these theories and understand the contemporary scholarly discussions surrounding them.

Neoclassical Theory of Electromagnetic Interactions

Neoclassical Theory of Electromagnetic Interactions
Author: Anatoli Babin
Publisher: Springer
Total Pages: 687
Release: 2016-08-04
Genre: Mathematics
ISBN: 1447172841

In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much larger than the classical electron radius and is relevant to plasmonics and emission physics. This book will appeal to researchers interested in advanced aspects of electromagnetic theory. Treating the classical approach in detail, including non-relativistic aspects and the Lagrangian framework, and comparing the neoclassical theory with quantum mechanics and the de Broglie–Bohm theory, this work is completely self-contained.

Thinking About Space and Time

Thinking About Space and Time
Author: Claus Beisbart
Publisher: Springer Nature
Total Pages: 277
Release: 2020-09-25
Genre: Mathematics
ISBN: 3030477827

This volume offers an integrated understanding of how the theory of general relativity gained momentum after Einstein had formulated it in 1915. Chapters focus on the early reception of the theory in physics and philosophy and on the systematic questions that emerged shortly after Einstein's momentous discovery. They are written by physicists, historians of science, and philosophers, and were originally presented at the conference titled Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity, held at the University of Bern from September 12-14, 2017. By establishing the historical context first, and then moving into more philosophical chapters, this volume will provide readers with a more complete understanding of early applications of general relativity (e.g., to cosmology) and of related philosophical issues. Because the chapters are often cross-disciplinary, they cover a wide variety of topics related to the general theory of relativity. These include: Heuristics used in the discovery of general relativity Mach's Principle The structure of Einstein's theory Cosmology and the Einstein world Stability of cosmological models The metaphysical nature of spacetime The relationship between spacetime and dynamics The Geodesic Principle Symmetries Thinking About Space and Time will be a valuable resource for historians of science and philosophers who seek a deeper knowledge of the (early and later) uses of general relativity, as well as for physicists and mathematicians interested in exploring the wider historical and philosophical context of Einstein's theory.

Bridging Circuits and Fields

Bridging Circuits and Fields
Author: Alexander I. Petroianu
Publisher: CRC Press
Total Pages: 174
Release: 2021-11-30
Genre: Mathematics
ISBN: 135177977X

Energy and power are fundamental concepts in electromagnetism and circuit theory, as well as in optics, signal processing, power engineering, electrical machines, and power electronics. However, in crossing the disciplinary borders, we encounter understanding difficulties due to (1) the many possible mathematical representations of the same physical objects, and (2) the many possible physical interpretations of the same mathematical entities. The monograph proposes a quantum and a relativistic approach to electromagnetic power theory that is based on recent advances in physics and mathematics. The book takes a fresh look at old debates related to the significance of the Poynting theorem and the interpretation of reactive power. Reformulated in the mathematical language of geometric algebra, the new expression of electromagnetic power reflects the laws of conservation of energy-momentum in fields and circuits. The monograph offers a mathematically consistent and a physically coherent interpretation of the power concept and of the mechanism of power transmission at the subatomic (mesoscopic) level. The monograph proves (paraphrasing Heaviside) that there is no finality in the development of a vibrant discipline: power theory.

Real Spinorial Groups

Real Spinorial Groups
Author: Sebastià Xambó-Descamps
Publisher: Springer
Total Pages: 157
Release: 2018-11-22
Genre: Mathematics
ISBN: 303000404X

This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry. After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples. Lastly, the book provides pointers to major applications, an extensive bibliography and an alphabetic index. Combining the characteristics of a self-contained research monograph and a state-of-the-art survey, this book is a valuable foundation reference resource on applications for both undergraduate and graduate students.

An Introduction to Clifford Algebras and Spinors

An Introduction to Clifford Algebras and Spinors
Author: Jayme Vaz Jr.
Publisher: Oxford University Press
Total Pages: 257
Release: 2016-05-12
Genre: Science
ISBN: 0191085782

This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and is accessible to both students and researchers. It emphasizes the formal character and the deep algebraic and geometric completeness, and merges them with the physical applications. The style is clear and precise, but not pedantic. The sole pre-requisites is a course in Linear Algebra which most students of Physics, Mathematics or Engineering will have covered as part of their undergraduate studies.