The Interplay Between Differential Geometry And Differential Equations
Download The Interplay Between Differential Geometry And Differential Equations full books in PDF, epub, and Kindle. Read online free The Interplay Between Differential Geometry And Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Valentin Vasilʹevich Lychagin |
Publisher | : American Mathematical Soc. |
Total Pages | : 308 |
Release | : 1995 |
Genre | : Differential equations, Nonlinear |
ISBN | : 9780821804285 |
Author | : Galina Filipuk |
Publisher | : Birkhäuser |
Total Pages | : 472 |
Release | : 2017-06-23 |
Genre | : Mathematics |
ISBN | : 3319528424 |
This volume consists of invited lecture notes, survey papers and original research papers from the AAGADE school and conference held in Będlewo, Poland in September 2015. The contributions provide an overview of the current level of interaction between algebra, geometry and analysis and demonstrate the manifold aspects of the theory of ordinary and partial differential equations, while also pointing out the highly fruitful interrelations between those aspects. These interactions continue to yield new developments, not only in the theory of differential equations but also in several related areas of mathematics and physics such as differential geometry, representation theory, number theory and mathematical physics. The main goal of the volume is to introduce basic concepts, techniques, detailed and illustrative examples and theorems (in a manner suitable for non-specialists), and to present recent developments in the field, together with open problems for more advanced and experienced readers. It will be of interest to graduate students, early-career researchers and specialists in analysis, geometry, algebra and related areas, as well as anyone interested in learning new methods and techniques.
Author | : Mladen Luksic |
Publisher | : American Mathematical Soc. |
Total Pages | : 286 |
Release | : 1987 |
Genre | : Mathematics |
ISBN | : 082185075X |
Contains papers that represent the proceedings of a conference entitled 'Differential Geometry: The Interface Between Pure and Applied Mathematics', which was held in San Antonio, Texas, in April 1986. This work covers a range of applications and techniques in such areas as ordinary differential equations, Lie groups, algebra and control theory.
Author | : Valentin Vasilʹevich Lychagin |
Publisher | : |
Total Pages | : 294 |
Release | : 1995 |
Genre | : Differential equations, Nonlinear |
ISBN | : 9780821804285 |
Author | : Loring W. Tu |
Publisher | : Springer |
Total Pages | : 358 |
Release | : 2017-06-01 |
Genre | : Mathematics |
ISBN | : 3319550845 |
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Author | : Sorin Dragomir |
Publisher | : Springer Science & Business Media |
Total Pages | : 499 |
Release | : 2007-06-10 |
Genre | : Mathematics |
ISBN | : 0817644830 |
Presents many major differential geometric acheivements in the theory of CR manifolds for the first time in book form Explains how certain results from analysis are employed in CR geometry Many examples and explicitly worked-out proofs of main geometric results in the first section of the book making it suitable as a graduate main course or seminar textbook Provides unproved statements and comments inspiring further study
Author | : R.W. Sharpe |
Publisher | : Springer Science & Business Media |
Total Pages | : 452 |
Release | : 2000-11-21 |
Genre | : Mathematics |
ISBN | : 9780387947327 |
Cartan geometries were the first examples of connections on a principal bundle. They seem to be almost unknown these days, in spite of the great beauty and conceptual power they confer on geometry. The aim of the present book is to fill the gap in the literature on differential geometry by the missing notion of Cartan connections. Although the author had in mind a book accessible to graduate students, potential readers would also include working differential geometers who would like to know more about what Cartan did, which was to give a notion of "espaces généralisés" (= Cartan geometries) generalizing homogeneous spaces (= Klein geometries) in the same way that Riemannian geometry generalizes Euclidean geometry. In addition, physicists will be interested to see the fully satisfying way in which their gauge theory can be truly regarded as geometry.
Author | : Liviu I. Nicolaescu |
Publisher | : World Scientific |
Total Pages | : 606 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 9812708537 |
The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that ?in learning the sciences examples are of more use than precepts?. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a ?global and analytical bias?. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincar duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-;Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hlder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.
Author | : Philippe G. Ciarlet |
Publisher | : Springer Science & Business Media |
Total Pages | : 212 |
Release | : 2006-06-28 |
Genre | : Technology & Engineering |
ISBN | : 1402042485 |
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].
Author | : Nicolas K. Laos |
Publisher | : World Scientific |
Total Pages | : 580 |
Release | : 1998 |
Genre | : Mathematics |
ISBN | : 9789810231804 |
This book studies the interplay between mathematical analysis and differential geometry as well as the foundations of these two fields. The development of a unified approach to topological vector spaces, differential geometry and algebraic and differential topology of function manifolds led to the broad expansion of global analysis. This book serves as a self-contained reference on both the prerequisites for further study and the recent research results which have played a decisive role in the advancement of global analysis.