The Geometry of Supermanifolds

The Geometry of Supermanifolds
Author: C. Bartocci
Publisher: Springer Science & Business Media
Total Pages: 255
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401135045

'Et moi ... - si favait III mmment en revenir, One service mathematics has rendered the je n'y serais point aile:' human race. It has put CXlUImon sense back Iules Verne where it belongs. on the topmost shelf next to the dUlty canister lahelled 'discarded non- The series i. divergent; therefore we may be able to do something with it. Eric T. Bell O. Hesvi.ide Mathematics is a tool for thOUght. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d't!tre of this series.

The Geometry of Supermanifolds

The Geometry of Supermanifolds
Author: C. Bartocci
Publisher: Springer Science & Business Media
Total Pages: 274
Release: 1991-10-31
Genre: Mathematics
ISBN: 9780792314400

'Et moi, ...* si favait III mmment en revenir, One service mathematics has rendered the je n'y serais point aile:' human race. It has put CXlUImon sense back Iules Verne where it belongs. on the topmost shelf next to the dUlty canister lahelled 'discarded non- The series i. divergent; therefore we may be able to do something with it. Eric T. Bell O. Hesvi.ide Mathematics is a tool for thOUght. A highly necessary tool in a world where both feedback and non­ linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com­ puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d't!tre of this series.

Supermanifolds

Supermanifolds
Author: Bryce Seligman DeWitt
Publisher: Cambridge University Press
Total Pages: 432
Release: 1992-05-28
Genre: Mathematics
ISBN: 9780521423779

This updated and expanded second edition of an established text presents a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the superanalogs of all the basic structures of ordinary manifold theory.

Supermanifolds

Supermanifolds
Author: Alice Rogers
Publisher: World Scientific
Total Pages: 262
Release: 2007
Genre: Mathematics
ISBN: 9812708855

This book aims to fill the gap in the available literature on supermanifolds, describing the different approaches to supermanifolds together with various applications to physics, including some which rely on the more mathematical aspects of supermanifold theory. The first part of the book contains a full introduction to the theory of supermanifolds, comparing and contrasting the different approaches that exist. Topics covered include tensors on supermanifolds, super fibre bundles, super Lie groups and integration theory. Later chapters emphasise applications, including the superspace approach to supersymmetric theories, super Riemann surfaces and the spinning string, path integration on supermanifolds and BRST quantization.

Riemannian Topology and Geometric Structures on Manifolds

Riemannian Topology and Geometric Structures on Manifolds
Author: Krzysztof Galicki
Publisher: Springer Science & Business Media
Total Pages: 303
Release: 2010-07-25
Genre: Mathematics
ISBN: 0817647430

Riemannian Topology and Structures on Manifolds results from a similarly entitled conference held on the occasion of Charles P. Boyer’s 65th birthday. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, Kähler and Sasakian geometry, and their interrelation to mathematical physics, especially M and superstring theory. Focusing on these fundamental ideas, this collection presents review articles, original results, and open problems of interest.

Geometry in Partial Differential Equations

Geometry in Partial Differential Equations
Author: Agostino Prastaro
Publisher: World Scientific
Total Pages: 482
Release: 1994
Genre: Mathematics
ISBN: 9789810214074

This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.

Introduction to Symplectic Geometry

Introduction to Symplectic Geometry
Author: Jean-Louis Koszul
Publisher: Springer
Total Pages: 166
Release: 2019-04-15
Genre: Science
ISBN: 9811339872

This introductory book offers a unique and unified overview of symplectic geometry, highlighting the differential properties of symplectic manifolds. It consists of six chapters: Some Algebra Basics, Symplectic Manifolds, Cotangent Bundles, Symplectic G-spaces, Poisson Manifolds, and A Graded Case, concluding with a discussion of the differential properties of graded symplectic manifolds of dimensions (0,n). It is a useful reference resource for students and researchers interested in geometry, group theory, analysis and differential equations.This book is also inspiring in the emerging field of Geometric Science of Information, in particular the chapter on Symplectic G-spaces, where Jean-Louis Koszul develops Jean-Marie Souriau's tools related to the non-equivariant case of co-adjoint action on Souriau’s moment map through Souriau’s Cocycle, opening the door to Lie Group Machine Learning with Souriau-Fisher metric.

Geometric Integration Theory on Supermanifolds

Geometric Integration Theory on Supermanifolds
Author: T. Voronov
Publisher: CRC Press
Total Pages: 152
Release: 1991
Genre: Mathematics
ISBN: 9783718651993

The author presents the first detailed and original account of his theory of forms on supermanifolds-a correct and non-trivial analogue of Cartan-de Rham theory based on new concepts. The paper develops the apparatus of supermanifold differential topology necessary for the integration theory. A key feature is the identification of a class of proper morphisms intimately connected with Berezin integration, which are of fundamental importance in various problems. The work also contains a condensed introduction to superanalysis and supermanifolds, free from algebraic formalism, which sets out afresh such challenging problems as the Berezin intgegral on a bounded domain.

Supermanifolds

Supermanifolds
Author: Bryce Dewitt
Publisher: CUP Archive
Total Pages: 340
Release: 1984
Genre: Science
ISBN: 9780521311762

This book presents a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theory of analysis over supernumbers (Grassmann variables), Berezin integration, supervector spaces and the superdeterminant. This basic material is then applied to the theory of supermanifolds, with an account of the super-analog of Lie derivatives, connections, metrics, curvature, geodesics, Killing flows, conformal groups, etc. The book goes on to discuss the theory of super Lie groups, super Lie algebras, and invariant geometrical structures on coset spaces. Complete descriptions are given of all the simple super Lie groups. The final chapter contains an account of the Peierls bracket for superclassical dynamical systems, super Hilbert spaces, path integration for fermionic quantum systems, and simple models of Bose-Fermi supersymmetry. Many exercises are included to supplement the material in the text.

Feynman Motives

Feynman Motives
Author: Matilde Marcolli
Publisher: World Scientific
Total Pages: 234
Release: 2010
Genre: Science
ISBN: 9814271217

This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a OC bottom-upOCO approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of BlochOCoEsnaultOCoKreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, OC top-downOCO approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a RiemannOCoHilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area. Sample Chapter(s). Chapter 1: Perturbative quantum field theory and Feynman diagrams (350 KB). Contents: Perturbative Quantum Field Theory and Feynman Diagrams; Motives and Periods; Feynman Integrals and Algebraic Varieties; Feynman Integrals and GelfandOCoLeray Forms; ConnesOCoKreimer Theory in a Nutshell; The RiemannOCoHilbert Correspondence; The Geometry of DimReg; Renormalization, Singularities, and Hodge Structures; Beyond Scalar Theories. Readership: Graduate students and researchers in mathematical physics and theoretical physics.