The Geometry of Hessian Structures

The Geometry of Hessian Structures
Author: Hirohiko Shima
Publisher: World Scientific
Total Pages: 261
Release: 2007
Genre: Mathematics
ISBN: 9812707530

The geometry of Hessian structures is a fascinating emerging field of research. It is in particular a very close relative of Knhlerian geometry, and connected with many important pure mathematical branches such as affine differential geometry, homogeneous spaces and cohomology. The theory also finds deep relation to information geometry in applied mathematics. This systematic introduction to the subject first develops the fundamentals of Hessian structures on the basis of a certain pair of a flat connection and a Riemannian metric, and then describes these related fields as applications of the theory."

Geometric Structures of Information

Geometric Structures of Information
Author: Frank Nielsen
Publisher: Springer
Total Pages: 395
Release: 2018-11-19
Genre: Technology & Engineering
ISBN: 3030025209

This book focuses on information geometry manifolds of structured data/information and their advanced applications featuring new and fruitful interactions between several branches of science: information science, mathematics and physics. It addresses interrelations between different mathematical domains like shape spaces, probability/optimization & algorithms on manifolds, relational and discrete metric spaces, computational and Hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning, and applications like geometries of audio-processing, inverse problems and signal processing. The book collects the most important contributions to the conference GSI’2017 – Geometric Science of Information.

Manifolds and Lie Groups

Manifolds and Lie Groups
Author: J. Hano
Publisher: Springer Science & Business Media
Total Pages: 465
Release: 2013-06-29
Genre: Mathematics
ISBN: 1461259878

This volume is the collection of papers dedicated to Yozo Matsushima on his 60th birthday, which took place on February 11, 1980. A conference in Geometry in honor of Professor Matsushima was held at the University of Notre Dame on May 14 and 15, 1980. Some of the papers in this volume were delivered on this occasion. 0 00 0\ - 15 S. Kobayashi, University 27 R. Ogawa, Loyola 42 P. Ryan, Indiana 1 W. Stoll 2 W. Kaup, University of of California at Berkeley University (Chicago) University at South Bend Tubing en 16 B.Y. Chen, 28 A. Howard 43 M. Kuga, SUNY at 3 G. Shimura, Michigan State University 29 D. Blair, Stony Brook Princeton University 17 G. Ludden, Michigan State University 44 W. Higgins 30 B. Smyth 4 A. Borel, Institute for Michigan State University 45 J. Curry Advanced Study 18 S. Harris, 31 A. Pradhan 46 D. Norris 32 R. Escobales, 5 Y. Matsushima University of Missouri 47 J. Spellecy Canisius College 6 Mrs. Matsushima 19 J. Beem, 48 M. Clancy 7 K. Nomizu, University of Missouri 33 L. Smiley 49 J. Rabinowitz, University 20 D. Collins, 34 C.H. Sung Brown University of Illinois at Chicago Valparaiso University 35 M. Markowitz 8 J.-1. Hano, 50 R. Richardson, Australian Washington University 36 A. Sommese 21 I. Satake, University of National University California at Berkeley 37 A. Vitter, 9 J. Carrell, University of 51 D. Lieberman, 22 H.

Fundamentals of Differential Geometry

Fundamentals of Differential Geometry
Author: Serge Lang
Publisher: Springer Science & Business Media
Total Pages: 553
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461205417

This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER

Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below

Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below
Author: Nicola Gigli
Publisher: American Mathematical Soc.
Total Pages: 174
Release: 2018-02-23
Genre: Mathematics
ISBN: 1470427656

The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.

Convex Functions and Optimization Methods on Riemannian Manifolds

Convex Functions and Optimization Methods on Riemannian Manifolds
Author: C. Udriste
Publisher: Springer Science & Business Media
Total Pages: 365
Release: 2013-11-11
Genre: Mathematics
ISBN: 9401583900

The object of this book is to present the basic facts of convex functions, standard dynamical systems, descent numerical algorithms and some computer programs on Riemannian manifolds in a form suitable for applied mathematicians, scientists and engineers. It contains mathematical information on these subjects and applications distributed in seven chapters whose topics are close to my own areas of research: Metric properties of Riemannian manifolds, First and second variations of the p-energy of a curve; Convex functions on Riemannian manifolds; Geometric examples of convex functions; Flows, convexity and energies; Semidefinite Hessians and applications; Minimization of functions on Riemannian manifolds. All the numerical algorithms, computer programs and the appendices (Riemannian convexity of functions f:R ~ R, Descent methods on the Poincare plane, Descent methods on the sphere, Completeness and convexity on Finsler manifolds) constitute an attempt to make accesible to all users of this book some basic computational techniques and implementation of geometric structures. To further aid the readers,this book also contains a part of the folklore about Riemannian geometry, convex functions and dynamical systems because it is unfortunately "nowhere" to be found in the same context; existing textbooks on convex functions on Euclidean spaces or on dynamical systems do not mention what happens in Riemannian geometry, while the papers dealing with Riemannian manifolds usually avoid discussing elementary facts. Usually a convex function on a Riemannian manifold is a real valued function whose restriction to every geodesic arc is convex.

Information Geometry and Its Applications

Information Geometry and Its Applications
Author: Shun-ichi Amari
Publisher: Springer
Total Pages: 378
Release: 2016-02-02
Genre: Mathematics
ISBN: 4431559787

This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.

On the Geometry of Some Special Projective Varieties

On the Geometry of Some Special Projective Varieties
Author: Francesco Russo
Publisher: Springer
Total Pages: 257
Release: 2016-01-25
Genre: Mathematics
ISBN: 3319267655

Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshorne’s Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds. The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once this embedded manifold, usually of lower codimension, is classified, one tries to reconstruct the original manifold, following a principle appearing also in other areas of geometry such as projective differential geometry or complex geometry.

Information Geometry

Information Geometry
Author: Geert Verdoolaege
Publisher: MDPI
Total Pages: 355
Release: 2019-04-04
Genre: Juvenile Nonfiction
ISBN: 3038976326

This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience.

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry
Author: Leonor Godinho
Publisher: Springer
Total Pages: 476
Release: 2014-07-26
Genre: Mathematics
ISBN: 3319086669

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.