The Geometry And Cohomology Of Some Simple Shimura Varieties Am 151
Download The Geometry And Cohomology Of Some Simple Shimura Varieties Am 151 full books in PDF, epub, and Kindle. Read online free The Geometry And Cohomology Of Some Simple Shimura Varieties Am 151 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michael Harris |
Publisher | : Princeton University Press |
Total Pages | : 287 |
Release | : 2001-11-04 |
Genre | : Mathematics |
ISBN | : 0691090920 |
This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the "simple" Shimura varieties. These two problems go hand in hand. The results represent a major advance in algebraic number theory, finally proving the conjecture first proposed in Langlands's 1969 Washington lecture as a non-abelian generalization of local class field theory. The local Langlands conjecture for GLn(K), where K is a p-adic field, asserts the existence of a correspondence, with certain formal properties, relating n-dimensional representations of the Galois group of K with the representation theory of the locally compact group GLn(K). This book constructs a candidate for such a local Langlands correspondence on the vanishing cycles attached to the bad reduction over the integer ring of K of a certain family of Shimura varieties. And it proves that this is roughly compatible with the global Galois correspondence realized on the cohomology of the same Shimura varieties. The local Langlands conjecture is obtained as a corollary. Certain techniques developed in this book should extend to more general Shimura varieties, providing new instances of the local Langlands conjecture. Moreover, the geometry of the special fibers is strictly analogous to that of Shimura curves and can be expected to have applications to a variety of questions in number theory.
Author | : Werner Müller |
Publisher | : Springer |
Total Pages | : 581 |
Release | : 2016-09-20 |
Genre | : Mathematics |
ISBN | : 3319414240 |
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
Author | : Colin J. Bushnell |
Publisher | : American Mathematical Soc. |
Total Pages | : 100 |
Release | : 2014-08-12 |
Genre | : Mathematics |
ISBN | : 082189417X |
Let F be a non-Archimedean local field. Let \mathcal{W}_{F} be the Weil group of F and \mathcal{P}_{F} the wild inertia subgroup of \mathcal{W}_{F}. Let \widehat {\mathcal{W}}_{F} be the set of equivalence classes of irreducible smooth representations of \mathcal{W}_{F}. Let \mathcal{A}^{0}_{n}(F) denote the set of equivalence classes of irreducible cuspidal representations of \mathrm{GL}_{n}(F) and set \widehat {\mathrm{GL}}_{F} = \bigcup _{n\ge 1} \mathcal{A}^{0}_{n}(F). If \sigma \in \widehat {\mathcal{W}}_{F}, let ^{L}{\sigma }\in \widehat {\mathrm{GL}}_{F} be the cuspidal representation matched with \sigma by the Langlands Correspondence. If \sigma is totally wildly ramified, in that its restriction to \mathcal{P}_{F} is irreducible, the authors treat ^{L}{\sigma} as known. From that starting point, the authors construct an explicit bijection \mathbb{N}:\widehat {\mathcal{W}}_{F} \to \widehat {\mathrm{GL}}_{F}, sending \sigma to ^{N}{\sigma}. The authors compare this "naïve correspondence" with the Langlands correspondence and so achieve an effective description of the latter, modulo the totally wildly ramified case. A key tool is a novel operation of "internal twisting" of a suitable representation \pi (of \mathcal{W}_{F} or \mathrm{GL}_{n}(F)) by tame characters of a tamely ramified field extension of F, canonically associated to \pi. The authors show this operation is preserved by the Langlands correspondence.
Author | : James W. Cogdell |
Publisher | : Walter de Gruyter |
Total Pages | : 441 |
Release | : 2011-06-24 |
Genre | : Mathematics |
ISBN | : 3110892707 |
This volume is the proceedings of the conference on Automorphic Representations, L-functions and Applications: Progress and Prospects, held at the Department of Mathematics of The Ohio State University, March 27–30, 2003, in honor of the 60th birthday of Steve Rallis. The theory of automorphic representations, automorphic L-functions and their applications to arithmetic continues to be an area of vigorous and fruitful research. The contributed papers in this volume represent many of the most recent developments and directions, including Rankin–Selberg L-functions (Bump, Ginzburg–Jiang–Rallis, Lapid–Rallis) the relative trace formula (Jacquet, Mao–Rallis) automorphic representations (Gan–Gurevich, Ginzburg–Rallis–Soudry) representation theory of p-adic groups (Baruch, Kudla–Rallis, Mœglin, Cogdell–Piatetski-Shapiro–Shahidi) p-adic methods (Harris–Li–Skinner, Vigneras), and arithmetic applications (Chinta–Friedberg–Hoffstein). The survey articles by Bump, on the Rankin–Selberg method, and by Jacquet, on the relative trace formula, should be particularly useful as an introduction to the key ideas about these important topics. This volume should be of interest both to researchers and students in the area of automorphic representations, as well as to mathematicians in other areas interested in having an overview of current developments in this important field.
Author | : Ayşe Alaca |
Publisher | : Springer |
Total Pages | : 253 |
Release | : 2015-10-28 |
Genre | : Mathematics |
ISBN | : 1493932012 |
The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor) of Fermat’s last theorem published in 1995 illustrates the high level of difficulty of problems encountered in number-theoretic research as well as the usefulness of the new ideas arising from its proof. The thirteenth conference of the Canadian Number Theory Association was held at Carleton University, Ottawa, Ontario, Canada from June 16 to 20, 2014. Ninety-nine talks were presented at the conference on the theme of advances in the theory of numbers. Topics of the talks reflected the diversity of current trends and activities in modern number theory. These topics included modular forms, hypergeometric functions, elliptic curves, distribution of prime numbers, diophantine equations, L-functions, Diophantine approximation, and many more. This volume contains some of the papers presented at the conference. All papers were refereed. The high quality of the articles and their contribution to current research directions make this volume a must for any mathematics library and is particularly relevant to researchers and graduate students with an interest in number theory. The editors hope that this volume will serve as both a resource and an inspiration to future generations of researchers in the theory of numbers.
Author | : James W. Cogdell |
Publisher | : Springer |
Total Pages | : 310 |
Release | : 2018-08-18 |
Genre | : Mathematics |
ISBN | : 3319955497 |
This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie.
Author | : Michael Harris |
Publisher | : |
Total Pages | : 223 |
Release | : 1999 |
Genre | : Cohomology operations |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 670 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 602 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : |
Author | : Wee Teck Gan |
Publisher | : Springer Science & Business Media |
Total Pages | : 317 |
Release | : 2007-12-22 |
Genre | : Mathematics |
ISBN | : 0817646396 |
Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas which do not usually interact with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series. The central theme of the exposition focuses on the common structural properties of Eisenstein series occurring in many related applications.