The Full Set of Unitarizable Highest Weight Modules of Basic Classical Lie Superalgebras

The Full Set of Unitarizable Highest Weight Modules of Basic Classical Lie Superalgebras
Author: Hans Plesner Jakobsen
Publisher: American Mathematical Soc.
Total Pages: 129
Release: 1994
Genre: Mathematics
ISBN: 0821825933

This work contains a complete description of the set of all unitarizable highest weight modules of classical Lie superalgebras. Unitarity is defined in the superalgebraic sense, and all the algebras are over the complex numbers. Part of the classification determines which real forms, defined by anti-linear anti-involutions, may occur. Although there have been many investigations for some special superalgebras, this appears to be the first systematic study of the problem.

Inverse Nodal Problems: Finding the Potential from Nodal Lines

Inverse Nodal Problems: Finding the Potential from Nodal Lines
Author: Ole H. Hald
Publisher: American Mathematical Soc.
Total Pages: 162
Release: 1996
Genre: Mathematics
ISBN: 0821804863

In this paper we consider an eigenvalue problem which arises in the study of rectangular membranes. The mathematical model is an elliptic equation, in potential form, with Dirichlet boundary conditions. We show that the potential is uniquely determined, up to an additive constant, by a subset of the nodal lines of the eigenfunctions. A formula is shown which, when the additive constant is given, yields an approximation to the potential at a dense set of points. We present an estimate for the error made by the formula. A substantial part of this work is the derivation of the asymptotic forms for a rich set of eigenvalues and eigenfunctions for a large set of rectangles.

On the Classification of $C^*$-algebras of Real Rank Zero: Inductive Limits of Matrix Algebras over Non-Hausdorff Graphs

On the Classification of $C^*$-algebras of Real Rank Zero: Inductive Limits of Matrix Algebras over Non-Hausdorff Graphs
Author: Hongbing Su
Publisher: American Mathematical Soc.
Total Pages: 98
Release: 1995
Genre: Mathematics
ISBN: 0821826077

In this paper a [italic capital]K-theoretic classification is given of the real rank zero [italic capital]C*-algebras that can be expressed as inductive limits of sequences of finite direct sums of matrix algebras over finite connected graphs (possibly with multiple vertices). The special case that the graphs are circles is due to Elliott.

Tilting in Abelian Categories and Quasitilted Algebras

Tilting in Abelian Categories and Quasitilted Algebras
Author: Dieter Happel
Publisher: American Mathematical Soc.
Total Pages: 103
Release: 1996
Genre: Mathematics
ISBN: 0821804448

We generalize tilting with respect to a tilting module of projective dimension at most one for an Artin algebra to tilting with respect to a torsion pair in an Abelian category. Our construction is motivated by the connection between tilting and derived categories. We develop a general theory for such tilting, and are led to a generalization of tilting algebras which we call quasitilted algebras. This class also contains the canonical algebras, and we show that the quasitilted algebras are characterized by having global dimension at most two and each indecomposable module having projective dimension at most one or injective dimension at most one. We also give other characterizations of quasitilted algebras, and give methods for constructing such algebras.

Intersection Pairings on Conley Indices

Intersection Pairings on Conley Indices
Author: Henry L. Kurland
Publisher: American Mathematical Soc.
Total Pages: 199
Release: 1996
Genre: Mathematics
ISBN: 0821804405

This memoir is a careful and detailed study of the intersection pairing in the Conley index. The Conley index associates to an isolated invariant set of a semiflow (with some mild compactness conditions) a homotopy type of a space, constructed to be invariant under perturbations of the flow. The homology of this space is the homology Conley index. For a (two-sided) flow, each isolated invariant set has two indices defined: one for the forward flow, and one for the reverse. In general, there is no relationship between these two indices, but when the flow is on an orientable manifold, the two indices can be related by an intersection pairing. It is this pairing that receives a careful and detailed study in this memoir. Results are then applied to the motivating example of the work: the existence of transition layer behavior for two-point boundary value problems of singularly perturbed systems.

On the Correlation of Multiplicative and the Sum of Additive Arithmetic Functions

On the Correlation of Multiplicative and the Sum of Additive Arithmetic Functions
Author: Peter D. T. A. Elliott
Publisher: American Mathematical Soc.
Total Pages: 102
Release: 1994
Genre: Mathematics
ISBN: 0821825984

The correlation of multiplicative arithmetic functions on distinct arithmetic progressions and with values in the complex unit disc, cannot be continually near to its possible maximum unless each function is either very close to or very far from a generalized character. Moreover, under accessible condition the second possibility can be ruled out. As a consequence analogs of the standard limit theorems in probabilistic number theory are obtained with the classical single additive function on the integers replaced by a sum of two additive functions on distinct arithmetic progressions.

Subgroup Lattices and Symmetric Functions

Subgroup Lattices and Symmetric Functions
Author: Lynne M. Butler
Publisher: American Mathematical Soc.
Total Pages: 173
Release: 1994
Genre: Mathematics
ISBN: 082182600X

This work presents foundational research on two approaches to studying subgroup lattices of finite abelian p-groups. The first approach is linear algebraic in nature and generalizes Knuth's study of subspace lattices. This approach yields a combinatorial interpretation of the Betti polynomials of these Cohen-Macaulay posets. The second approach, which employs Hall-Littlewood symmetric functions, exploits properties of Kostka polynomials to obtain enumerative results such as rank-unimodality. Butler completes Lascoux and Schützenberger's proof that Kostka polynomials are nonnegative, then discusses their monotonicity result and a conjecture on Macdonald's two-variable Kostka functions.

Discretization of Homoclinic Orbits, Rapid Forcing and ``Invisible'' Chaos

Discretization of Homoclinic Orbits, Rapid Forcing and ``Invisible'' Chaos
Author: Bernold Fiedler
Publisher: American Mathematical Soc.
Total Pages: 94
Release: 1996
Genre: Mathematics
ISBN: 0821804685

Numerically speaking, continuous time dynamical systems do not exist. Rather, a discretized version is studied and interpreted in analogy to the continuous time dynamical system. Over fixed finite time intervals, this analogy is quite close and well understood in terms of discretization errors and sophisticated discretization schemes. Over large or infinite time intervals, this analogy is not so clear, because discretization errors tend to accumulate exponentially with time. In this paper, we specifically investigate the correspondence between continuous and discrete time dynamical systems for homoclinic orbits. By definition, these are orbits which tend to the same stationary point for both large positive and large negative times.

Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials

Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials
Author: Alouf Jirari
Publisher: American Mathematical Soc.
Total Pages: 154
Release: 1995
Genre: Mathematics
ISBN: 082180359X

This memoir presents machinery for analyzing many discrete physical situations, and should be of interest to physicists, engineers, and mathematicians. We develop a theory for regular and singular Sturm-Liouville boundary value problems for difference equations, generalizing many of the known results for differential equations. We discuss the self-adjointness of these problems as well as their abstract spectral resolution in the appropriate [italic capital]L2 setting, and give necessary and sufficient conditions for a second-order difference operator to be self-adjoint and have orthogonal polynomials as eigenfunctions.