The Definitive Guide to Data Integration

The Definitive Guide to Data Integration
Author: Pierre-Yves BONNEFOY
Publisher: Packt Publishing Ltd
Total Pages: 490
Release: 2024-03-29
Genre: Computers
ISBN: 1837634777

Learn the essentials of data integration with this comprehensive guide, covering everything from sources to solutions, and discover the key to making the most of your data stack Key Features Learn how to leverage modern data stack tools and technologies for effective data integration Design and implement data integration solutions with practical advice and best practices Focus on modern technologies such as cloud-based architectures, real-time data processing, and open-source tools and technologies Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe Definitive Guide to Data Integration is an indispensable resource for navigating the complexities of modern data integration. Focusing on the latest tools, techniques, and best practices, this guide helps you master data integration and unleash the full potential of your data. This comprehensive guide begins by examining the challenges and key concepts of data integration, such as managing huge volumes of data and dealing with the different data types. You’ll gain a deep understanding of the modern data stack and its architecture, as well as the pivotal role of open-source technologies in shaping the data landscape. Delving into the layers of the modern data stack, you’ll cover data sources, types, storage, integration techniques, transformation, and processing. The book also offers insights into data exposition and APIs, ingestion and storage strategies, data preparation and analysis, workflow management, monitoring, data quality, and governance. Packed with practical use cases, real-world examples, and a glimpse into the future of data integration, The Definitive Guide to Data Integration is an essential resource for data eclectics. By the end of this book, you’ll have the gained the knowledge and skills needed to optimize your data usage and excel in the ever-evolving world of data.What you will learn Discover the evolving architecture and technologies shaping data integration Process large data volumes efficiently with data warehousing Tackle the complexities of integrating large datasets from diverse sources Harness the power of data warehousing for efficient data storage and processing Design and optimize effective data integration solutions Explore data governance principles and compliance requirements Who this book is for This book is perfect for data engineers, data architects, data analysts, and IT professionals looking to gain a comprehensive understanding of data integration in the modern era. Whether you’re a beginner or an experienced professional enhancing your knowledge of the modern data stack, this definitive guide will help you navigate the data integration landscape.

Principles of Data Integration

Principles of Data Integration
Author: AnHai Doan
Publisher: Elsevier
Total Pages: 522
Release: 2012-06-25
Genre: Computers
ISBN: 0123914795

Principles of Data Integration is the first comprehensive textbook of data integration, covering theoretical principles and implementation issues as well as current challenges raised by the semantic web and cloud computing. The book offers a range of data integration solutions enabling you to focus on what is most relevant to the problem at hand. Readers will also learn how to build their own algorithms and implement their own data integration application. Written by three of the most respected experts in the field, this book provides an extensive introduction to the theory and concepts underlying today's data integration techniques, with detailed, instruction for their application using concrete examples throughout to explain the concepts. This text is an ideal resource for database practitioners in industry, including data warehouse engineers, database system designers, data architects/enterprise architects, database researchers, statisticians, and data analysts; students in data analytics and knowledge discovery; and other data professionals working at the R&D and implementation levels. - Offers a range of data integration solutions enabling you to focus on what is most relevant to the problem at hand - Enables you to build your own algorithms and implement your own data integration applications

Managing Data in Motion

Managing Data in Motion
Author: April Reeve
Publisher: Newnes
Total Pages: 203
Release: 2013-02-26
Genre: Computers
ISBN: 0123977916

Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the "data in motion" in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and "big data" applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of "Big Data"

Customer Data Integration

Customer Data Integration
Author: Jill Dyché
Publisher: John Wiley & Sons
Total Pages: 358
Release: 2011-01-31
Genre: Business & Economics
ISBN: 1118046471

"Customers are the heart of any business. But we can't succeed if we develop only one talk addressed to the 'average customer.' Instead we must know each customer and build our individual engagements with that knowledge. If Customer Relationship Management (CRM) is going to work, it calls for skills in Customer Data Integration (CDI). This is the best book that I have seen on the subject. Jill Dyché is to be complimented for her thoroughness in interviewing executives and presenting CDI." -Philip Kotler, S. C. Johnson Distinguished Professor of International Marketing Kellogg School of Management, Northwestern University "In this world of killer competition, hanging on to existing customers is critical to survival. Jill Dyché's new book makes that job a lot easier than it has been." -Jack Trout, author, Differentiate or Die "Jill and Evan have not only written the definitive work on Customer Data Integration, they've made the business case for it. This book offers sound advice to business people in search of innovative ways to bring data together about customers-their most important asset-while at the same time giving IT some practical tips for implementing CDI and MDM the right way." -Wayne Eckerson, The Data Warehousing Institute author of Performance Dashboards: Measuring, Monitoring, and Managing Your Business Whatever business you're in, you're ultimately in the customer business. No matter what your product, customers pay the bills. But the strategic importance of customer relationships hasn't brought companies much closer to a single, authoritative view of their customers. Written from both business and technicalperspectives, Customer Data Integration shows companies how to deliver an accurate, holistic, and long-term understanding of their customers through CDI.

Business Intelligence Guidebook

Business Intelligence Guidebook
Author: Rick Sherman
Publisher: Newnes
Total Pages: 551
Release: 2014-11-04
Genre: Computers
ISBN: 0124115284

Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.

Data Integration Blueprint and Modeling

Data Integration Blueprint and Modeling
Author: Anthony David Giordano
Publisher: Pearson Education
Total Pages: 476
Release: 2010-12-27
Genre: Business & Economics
ISBN: 0137085281

Making Data Integration Work: How to Systematically Reduce Cost, Improve Quality, and Enhance Effectiveness Today’s enterprises are investing massive resources in data integration. Many possess thousands of point-to-point data integration applications that are costly, undocumented, and difficult to maintain. Data integration now accounts for a major part of the expense and risk of typical data warehousing and business intelligence projects--and, as businesses increasingly rely on analytics, the need for a blueprint for data integration is increasing now more than ever. This book presents the solution: a clear, consistent approach to defining, designing, and building data integration components to reduce cost, simplify management, enhance quality, and improve effectiveness. Leading IBM data management expert Tony Giordano brings together best practices for architecture, design, and methodology, and shows how to do the disciplined work of getting data integration right. Mr. Giordano begins with an overview of the “patterns” of data integration, showing how to build blueprints that smoothly handle both operational and analytic data integration. Next, he walks through the entire project lifecycle, explaining each phase, activity, task, and deliverable through a complete case study. Finally, he shows how to integrate data integration with other information management disciplines, from data governance to metadata. The book’s appendices bring together key principles, detailed models, and a complete data integration glossary. Coverage includes Implementing repeatable, efficient, and well-documented processes for integrating data Lowering costs and improving quality by eliminating unnecessary or duplicative data integrations Managing the high levels of complexity associated with integrating business and technical data Using intuitive graphical design techniques for more effective process and data integration modeling Building end-to-end data integration applications that bring together many complex data sources

The Data Warehouse Toolkit

The Data Warehouse Toolkit
Author: Ralph Kimball
Publisher: John Wiley & Sons
Total Pages: 464
Release: 2011-08-08
Genre: Computers
ISBN: 1118082141

This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.

Data Governance: The Definitive Guide

Data Governance: The Definitive Guide
Author: Evren Eryurek
Publisher: "O'Reilly Media, Inc."
Total Pages: 254
Release: 2021-03-08
Genre: Business & Economics
ISBN: 1492063460

As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness.

Kafka: The Definitive Guide

Kafka: The Definitive Guide
Author: Gwen Shapira
Publisher: "O'Reilly Media, Inc."
Total Pages: 486
Release: 2021-11-05
Genre: Computers
ISBN: 1492043052

Every enterprise application creates data, whether it consists of log messages, metrics, user activity, or outgoing messages. Moving all this data is just as important as the data itself. With this updated edition, application architects, developers, and production engineers new to the Kafka streaming platform will learn how to handle data in motion. Additional chapters cover Kafka's AdminClient API, transactions, new security features, and tooling changes. Engineers from Confluent and LinkedIn responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream processing applications with this platform. Through detailed examples, you'll learn Kafka's design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer. You'll examine: Best practices for deploying and configuring Kafka Kafka producers and consumers for writing and reading messages Patterns and use-case requirements to ensure reliable data delivery Best practices for building data pipelines and applications with Kafka How to perform monitoring, tuning, and maintenance tasks with Kafka in production The most critical metrics among Kafka's operational measurements Kafka's delivery capabilities for stream processing systems