Digital Arithmetic

Digital Arithmetic
Author: Milos D. Ercegovac
Publisher: Elsevier
Total Pages: 736
Release: 2004
Genre: Computers
ISBN: 1558607986

The authoritative reference on the theory and design practice of computer arithmetic.

Calculus: A Complete Introduction

Calculus: A Complete Introduction
Author: Hugh Neill
Publisher: Teach Yourself
Total Pages: 416
Release: 2013-05-31
Genre: Mathematics
ISBN: 1444191136

Calculus: A Complete Introduction is the most comprehensive yet easy-to-use introduction to using calculus. Written by a leading expert, this book will help you if you are studying for an important exam or essay, or if you simply want to improve your knowledge. The book covers all areas of calculus, including functions, gradients, rates of change, differentiation, exponential and logarithmic functions and integration. Everything you will need to know is here in one book. Each chapter includes not only an explanation of the knowledge and skills you need, but also worked examples and test questions.

Arithmetic

Arithmetic
Author: Paul Lockhart
Publisher: Harvard University Press
Total Pages: 232
Release: 2019-07-15
Genre: Mathematics
ISBN: 067423751X

Paul Lockhart reveals arithmetic not as the rote manipulation of numbers but as a set of ideas that exhibit the surprising behaviors usually reserved for higher branches of mathematics. In this entertaining survey, he explores the nature of counting and different number systems—Western and non-Western—and weighs the pluses and minuses of each.

How to Calculate Quickly

How to Calculate Quickly
Author: Henry Sticker
Publisher: Courier Corporation
Total Pages: 211
Release: 1955-01-01
Genre: Mathematics
ISBN: 048620295X

A number sense approach to the four basic operations of arithmetic together with fractions and decimals

How Math Works

How Math Works
Author: G. Arnell Williams
Publisher: Rowman & Littlefield Publishers
Total Pages: 347
Release: 2013-04-04
Genre: Education
ISBN: 1442218762

We hear all the time how American children are falling behind their global peers in various basic subjects, but particularly in math. Is it our fear of math that constrains us? Or our inability to understand math’s place in relation to our everyday lives? How can we help our children better understand the basics of arithmetic if we’re not really sure we understand them ourselves? Here, G. Arnell Williams helps parents and teachers explore the world of math that their elementary school children are learning. Taking readers on a tour of the history of arithmetic, and its growth into the subject we know it to be today, Williams explores the beauty and relevance of mathematics by focusing on the great conceptual depth and genius already inherent in the elementary mathematics familiar to us all, and by connecting it to other well-known areas such as language and the conceptual aspects of everyday life. The result is a book that will help you to better explain mathematics to your children. For those already well versed in these areas, the book offers a tour of the great conceptual and historical facts and assumptions that most simply take for granted. If you are someone who has always struggled with mathematics either because you couldn’t do it or because you never really understood why the rules are the way they are, if you were irritated with the way it was taught to you with the emphasis being only on learning the rules and “recipes” by rote as opposed to obtaining a good conceptual understanding, then How Math Works is for you!

Mathematics Form and Function

Mathematics Form and Function
Author: Saunders MacLane
Publisher: Springer Science & Business Media
Total Pages: 486
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461248728

This book records my efforts over the past four years to capture in words a description of the form and function of Mathematics, as a background for the Philosophy of Mathematics. My efforts have been encouraged by lec tures that I have given at Heidelberg under the auspices of the Alexander von Humboldt Stiftung, at the University of Chicago, and at the University of Minnesota, the latter under the auspices of the Institute for Mathematics and Its Applications. Jean Benabou has carefully read the entire manuscript and has offered incisive comments. George Glauberman, Car los Kenig, Christopher Mulvey, R. Narasimhan, and Dieter Puppe have provided similar comments on chosen chapters. Fred Linton has pointed out places requiring a more exact choice of wording. Many conversations with George Mackey have given me important insights on the nature of Mathematics. I have had similar help from Alfred Aeppli, John Gray, Jay Goldman, Peter Johnstone, Bill Lawvere, and Roger Lyndon. Over the years, I have profited from discussions of general issues with my colleagues Felix Browder and Melvin Rothenberg. Ideas from Tammo Tom Dieck, Albrecht Dold, Richard Lashof, and Ib Madsen have assisted in my study of geometry. Jerry Bona and B.L. Foster have helped with my examina tion of mechanics. My observations about logic have been subject to con structive scrutiny by Gert Miiller, Marian Boykan Pour-El, Ted Slaman, R. Voreadou, Volker Weispfennig, and Hugh Woodin.

Field Arithmetic

Field Arithmetic
Author: Michael D. Fried
Publisher: Springer Science & Business Media
Total Pages: 812
Release: 2005
Genre: Computers
ISBN: 9783540228110

Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?