The Brauer Hasse Noether Theorem In Historical Perspective
Download The Brauer Hasse Noether Theorem In Historical Perspective full books in PDF, epub, and Kindle. Read online free The Brauer Hasse Noether Theorem In Historical Perspective ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Peter Roquette |
Publisher | : Springer Science & Business Media |
Total Pages | : 92 |
Release | : 2006-03-30 |
Genre | : Mathematics |
ISBN | : 3540269681 |
The unpublished writings of Helmut Hasse, consisting of letters, manuscripts and other papers, are kept at the Handschriftenabteilung of the University Library at Göttingen. Hasse had an extensive correspondence; he liked to exchange mathematical ideas, results and methods freely with his colleagues. There are more than 8000 documents preserved. Although not all of them are of equal mathematical interest, searching through this treasure can help us to assess the development of Number Theory through the 1920s and 1930s. The present volume is largely based on the letters and other documents its author has found concerning the Brauer-Hasse-Noether Theorem in the theory of algebras; this covers the years around 1931. In addition to the documents from the literary estates of Hasse and Brauer in Göttingen, the author also makes use of some letters from Emmy Noether to Richard Brauer that are preserved at the Bryn Mawr College Library (Pennsylvania, USA).
Author | : Peter Roquette |
Publisher | : Springer |
Total Pages | : 239 |
Release | : 2018-09-28 |
Genre | : Mathematics |
ISBN | : 3319990675 |
This book tells the story of the Riemann hypothesis for function fields (or curves) starting with Artin's 1921 thesis, covering Hasse's work in the 1930s on elliptic fields and more, and concluding with Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time, found in various archives, mostly the University Library in Göttingen. The aim is to show how the ideas formed, and how the proper notions and proofs were found, providing a particularly well-documented illustration of how mathematics develops in general. The book is written for mathematicians, but it does not require any special knowledge of particular mathematical fields.
Author | : Peter Roquette |
Publisher | : Springer Nature |
Total Pages | : 328 |
Release | : 2023-01-25 |
Genre | : Mathematics |
ISBN | : 303112880X |
Providing the first comprehensive account of the widely unknown cooperation and friendship between Emmy Noether and Helmut Hasse, this book contains English translations of all available letters which were exchanged between them in the years 1925-1935. It features a special chapter on class field theory, a subject which was completely renewed in those years, Noether and Hasse being among its main proponents. These historical items give evidence that Emmy Noether's impact on the development of mathematics is not confined to abstract algebra but also extends to important ideas in modern class field theory as part of algebraic number theory. In her letters, details of proofs appear alongside conjectures and speculations, offering a rich source for those who are interested in the rise and development of mathematical notions and ideas. The letters are supplemented by extensive comments, helping the reader to understand their content within the mathematical environment of the 1920s and 1930s.
Author | : David E. Rowe |
Publisher | : Springer Nature |
Total Pages | : 339 |
Release | : 2021-01-09 |
Genre | : Mathematics |
ISBN | : 3030638103 |
Although she was famous as the "mother of modern algebra," Emmy Noether’s life and work have never been the subject of an authoritative scientific biography. Emmy Noether – Mathematician Extraordinaire represents the most comprehensive study of this singularly important mathematician to date. Focusing on key turning points, it aims to provide an overall interpretation of Noether’s intellectual development while offering a new assessment of her role in transforming the mathematics of the twentieth century. Hermann Weyl, her colleague before both fled to the United States in 1933, fully recognized that Noether’s dynamic school was the very heart and soul of the famous Göttingen community. Beyond her immediate circle of students, Emmy Noether’s lectures and seminars drew talented mathematicians from all over the world. Four of the most important were B.L. van der Waerden, Pavel Alexandrov, Helmut Hasse, and Olga Taussky. Noether’s classic papers on ideal theory inspired van der Waerden to recast his research in algebraic geometry. Her lectures on group theory motivated Alexandrov to develop links between point set topology and combinatorial methods. Noether’s vision for a new approach to algebraic number theory gave Hasse the impetus to pursue a line of research that led to the Brauer–Hasse–Noether Theorem, whereas her abstract style clashed with Taussky’s approach to classical class field theory during a difficult time when both were trying to find their footing in a foreign country. Although similar to Proving It Her Way: Emmy Noether, a Life in Mathematics, this lengthier study addresses mathematically minded readers. Thus, it presents a detailed analysis of Emmy Noether’s work with Hilbert and Klein on mathematical problems connected with Einstein’s theory of relativity. These efforts culminated with her famous paper "Invariant Variational Problems," published one year before she joined the Göttingen faculty in 1919.
Author | : Günther Frei |
Publisher | : Springer Science & Business Media |
Total Pages | : 499 |
Release | : 2014-01-16 |
Genre | : Mathematics |
ISBN | : 3034807155 |
This volume consists of the English translations of the letters exchanged between Emil Artin to Helmut Hasse written from 1921 until 1958. The letters are accompanied by extensive comments explaining the mathematical background and giving the information needed for understanding these letters. Most letters deal with class field theory and shed a light on the birth of one of its most profound results: Artin's reciprocity law.
Author | : Władysław Narkiewicz |
Publisher | : Springer |
Total Pages | : 448 |
Release | : 2019-01-18 |
Genre | : Mathematics |
ISBN | : 3030037541 |
The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period. The reader will get information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done earlier, which may hide some ideas which could be applied in contemporary research.
Author | : David E. Rowe |
Publisher | : |
Total Pages | : 259 |
Release | : 2020 |
Genre | : Algebra |
ISBN | : 3030628116 |
The name Emmy Noether is one of the most celebrated in the history of mathematics. A brilliant algebraist and iconic figure for women in modern science, Noether exerted a strong influence on the younger mathematicians of her time and long thereafter; today, she is known worldwide as the "mother of modern algebra." Drawing on original archival material and recent research, this book follows Emmy Noethers career from her early years in Erlangen up until her tragic death in the United States. After solving a major outstanding problem in Einsteins theory of relativity, she was finally able to join the Göttingen faculty in 1919. Proving It Her Way offers a new perspective on an extraordinary career, first, by focusing on important figures in Noethers life and, second, by showing how she selflessly promoted the careers of several other talented individuals. By exploring her mathematical world, it aims to convey the personality and impact of a remarkable mathematician who literally changed the face of modern mathematics, despite the fact that, as a woman, she never held a regular professorship. Written for a general audience, this study uncovers the human dimensions of Noethers key relationships with a younger generation of mathematicians. Thematically, the authors took inspiration from their cooperation with the ensemble portraittheater Vienna in producing the play "Diving into Math with Emmy Noether." Four of the young mathematicians portrayed in Proving It Her Way - B.L. van der Waerden, Pavel Alexandrov, Helmut Hasse, and Olga Taussky - also appear in "Diving into Math.".
Author | : Janet L. Beery |
Publisher | : Springer |
Total Pages | : 405 |
Release | : 2017-12-02 |
Genre | : Mathematics |
ISBN | : 3319666940 |
This collection of refereed papers celebrates the contributions, achievements, and progress of female mathematicians, mostly in the 20th and 21st centuries. Emerging from the themed paper session “The Contributions of Women to Mathematics: 100 Years and Counting” at MAA's 2015 MathFest, this volume contains a diverse mix of current scholarship and exposition on women and mathematics, including biographies, histories, and cultural discussions. The multiplicity of authors also ensures a wide variety of perspectives. In inspiring and informative chapters, the authors featured in this volume reflect on the accomplishments of women in mathematics, showcasing the changes in mathematical culture that resulted as more women obtained tenure-track and tenured academic positions, received prestigious awards and honors, served in leadership roles in professional societies, and became more visibly active in the mathematical community. Readers will find discussions of mathematical excellence at Girton College, Cambridge, in the late 19th and early 20th centuries; of perseverance by Polish women in mathematics during and after World War II and by Black women in mathematics in the United States from the 1880s onward; and of the impact of outreach programs ranging from EDGE's promotion of graduate education to the Daughters of Hypatia dance performances. The volume also provides informative biographies of a variety of women from mathematics and statistics, many of them well-known and others less well-known, including Charlotte Angas Scott, Emmy Noether, Mina Rees, Gertrude Cox, Euphemia Lofton Haynes, Norma Hernandez, Deborah Tepper Haimo, and Teri Perl. These essays provide compelling reading for a wide audience, including mathematicians, historians of science, teachers of mathematics, and students at the high school, college, and graduate levels. Anyone interested in attracting more girls and women as students, faculty, and/or employees will also find this volume engaging and enlightening.
Author | : David Harari |
Publisher | : Springer Nature |
Total Pages | : 336 |
Release | : 2020-06-24 |
Genre | : Mathematics |
ISBN | : 3030439011 |
This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory. Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the Čebotarev density theorem. Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.
Author | : Fernando Q. Gouvêa |
Publisher | : American Mathematical Soc. |
Total Pages | : 329 |
Release | : 2012-12-31 |
Genre | : Mathematics |
ISBN | : 1614442118 |
Insightful overview of many kinds of algebraic structures that are ubiquitous in mathematics. For researchers at graduate level and beyond.