The Blocking Technique Weighted Mean Operators And Hardys Inequality
Download The Blocking Technique Weighted Mean Operators And Hardys Inequality full books in PDF, epub, and Kindle. Read online free The Blocking Technique Weighted Mean Operators And Hardys Inequality ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Karl-Goswin Grosse-Erdmann |
Publisher | : Springer |
Total Pages | : 122 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540696644 |
This book presents the first comprehensive treatment of the blocking technique which consists in transforming norms in section form into norms in block form, and vice versa. Such norms appear throughout analysis. The blocking technique is a powerful, yet elementary, tool whose usefulnes is demonstrated in the book. In particular, it is shown to lead to the solution of three recent problems of Bennett concerning the inequalities of Hardy and Copson. The book is addressed to researchers and graduate students. An interesting feature is that it contains a dictionary of transformations between section and block norms and will thus be useful to researchers as a reference text. The book requires no knowledge beyond an introductory course in functional analysis.
Author | : David E. Edmunds |
Publisher | : Springer Science & Business Media |
Total Pages | : 334 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3662077310 |
Classical Sobolev spaces, based on Lebesgue spaces on an underlying domain with smooth boundary, are not only of considerable intrinsic interest but have for many years proved to be indispensible in the study of partial differential equations and variational problems. Many developments of the basic theory since its inception arise in response to concrete problems, for example, with the (ubiquitous) sets with fractal boundaries. The theory will probably enjoy substantial further growth, but even now a connected account of the mature parts of it makes a useful addition to the literature. Accordingly, the main themes of this book are Banach spaces and spaces of Sobolev type based on them; integral operators of Hardy type on intervals and on trees; and the distribution of the approximation numbers (singular numbers in the Hilbert space case) of embeddings of Sobolev spaces based on generalised ridged domains. This timely book will be of interest to all those concerned with the partial differential equations and their ramifications. A prerequisite for reading it is a good graduate course in real analysis.
Author | : Ari Laptev |
Publisher | : Springer Science & Business Media |
Total Pages | : 408 |
Release | : 2009-11-25 |
Genre | : Mathematics |
ISBN | : 1441913459 |
This volume reflects the variety of areas where Maz'ya's results are fundamental, influential and/or pioneering. New advantages in such areas are presented by world-recognized experts and include, in particularly, Beurling's minimum principle, inverse hyperbolic problems, degenerate oblique derivative problems, the Lp-contractivity of the generated semigroups, some class of singular integral operators, general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities,domains with rough boundaries, integral and supremum operators, finite rank Toeplitz operators, etc.
Author | : Luboš Pick |
Publisher | : Walter de Gruyter |
Total Pages | : 495 |
Release | : 2012-12-19 |
Genre | : Mathematics |
ISBN | : 311025042X |
This is the first part of the second revised and extended edition of the well established book "Function Spaces" by Alois Kufner, Oldřich John, and Svatopluk Fučík. Like the first edition this monograph is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces in their research or lecture courses. This first volume is devoted to the study of function spaces, based on intrinsic properties of a function such as its size, continuity, smoothness, various forms of a control over the mean oscillation, and so on. The second volume will be dedicated to the study of function spaces of Sobolev type, in which the key notion is the weak derivative of a function of several variables.
Author | : Johann Boos |
Publisher | : Clarendon Press |
Total Pages | : 616 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 9780198501657 |
Summability is a mathematical topic with a long tradition and many applications in, for example, function theory, number theory, and stochastics. It was originally based on classical analytical methods, but was strongly influenced by modern functional analytical methods during the last seven decades. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Part I contains a short general introduction to summability, the basic classical theory concerning mainly inclusion theorems and theorems of the Silverman-Toeplitz type, a presentation of the most important classes of summability methods, Tauberian theorems, and applications of matrix methods. The proofs in Part I are exclusively done by applying classical analytical methods. Part II is concerned with modern functional analytical methods in summability, and contains the essential functional analytical basis required in later parts of the book, topologization of sequence spaces as K- and KF-spaces, domains of matrix methods as FK-spaces and their topological structure. In this part the proofs are of functional analytical nature only. Part III of the present book deals with topics in summability and topological sequence spaces which require the combination of classical and modern methods. It covers investigations of the constistency of matrix methods and of the bounded domain of matrix methods via Saks space theory, and the presentation of some aspects in topological sequence spaces. Lecturers, graduate students, and researchers working in summability and related topics will find this book a useful introduction and reference work.
Author | : Bruno de Malafosse |
Publisher | : Springer Nature |
Total Pages | : 379 |
Release | : 2021-01-19 |
Genre | : Mathematics |
ISBN | : 9811597421 |
This book presents modern methods in functional analysis and operator theory along with their applications in recent research. The book also deals with the solvability of infinite systems of linear equations in various sequence spaces. It uses the classical sequence spaces, generalized Cesaro and difference operators to obtain calculations and simplifications of complicated spaces involving these operators. In order to make it self-contained, comprehensive and of interest to a larger mathematical community, the authors have presented necessary concepts with results for advanced research topics. This book is intended for graduate and postgraduate students, teachers and researchers as a basis for further research, advanced lectures and seminars.
Author | : Peter Bullen |
Publisher | : CRC Press |
Total Pages | : 390 |
Release | : 2015-06-15 |
Genre | : Mathematics |
ISBN | : 1482237628 |
Adding new results that have appeared in the last 15 years, Dictionary of Inequalities, Second Edition provides an easy way for researchers to locate an inequality by name or subject. This edition offers an up-to-date, alphabetical listing of each inequality with a short statement of the result, some comments, references to related inequalities, an
Author | : Óscar Domínguez |
Publisher | : American Mathematical Society |
Total Pages | : 180 |
Release | : 2023-02-13 |
Genre | : Mathematics |
ISBN | : 1470455382 |
Author | : Peter Bullen |
Publisher | : CRC Press |
Total Pages | : 298 |
Release | : 1998-08-21 |
Genre | : Mathematics |
ISBN | : 9780582327481 |
The literature on inequalities is vast-in recent years the number of papers as well as the number of journals devoted to the subject have increased dramatically. At best, locating a particular inequality within the literature can be a cumbersome task. A Dictionary of Inequalities ends the dilemma of where to turn to find a result, a related inequality, or the references to the information you need. It provides a concise, alphabetical listing of each inequality-by its common name or its subject-with a short statement of the result, some comments, references to related inequalities, and a list of sources for further information. The author uses only the most elementary of mathematical terminology and does not offer proofs, thus making an interest in inequalities the only prerequisite for using the text. The author focuses on intuitive, physical forms of inequalities rather than their most general versions, and retains the beauty and importance of original versions rather than listing their later, abstract forms. He presents each in its simplest form with other renditions, such as for complex numbers and vectors, as extensions or under different headings. He has kept the book to a more manageable size by omitting inequalities in areas-such as elementary geometric and trigonometric inequalities-rarely used outside their fields. The end result is a current, concise, reference that puts the essential results on inequalities within easy reach. A Dictionary of Inequalities carries the beauty and attraction of the best and most successful dictionaries: on looking up a given item, the reader is likely to be intrigued and led by interest to others.
Author | : Miroslav Pavlović |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 572 |
Release | : 2019-08-19 |
Genre | : Mathematics |
ISBN | : 3110630850 |
This revised and extended edition of a well-established monograph in function theory contains a study on various function classes on the disc, a number of new results and new or easy proofs of old but interesting theorems (for example, the Fefferman–Stein theorem on subharmonic behavior or the theorem on conjugate functions in Bergman spaces) and a full discussion on g-functions.