Bayesian Designs for Phase I-II Clinical Trials

Bayesian Designs for Phase I-II Clinical Trials
Author: Ying Yuan
Publisher: CRC Press
Total Pages: 238
Release: 2017-12-19
Genre: Mathematics
ISBN: 1315354225

Reliably optimizing a new treatment in humans is a critical first step in clinical evaluation since choosing a suboptimal dose or schedule may lead to failure in later trials. At the same time, if promising preclinical results do not translate into a real treatment advance, it is important to determine this quickly and terminate the clinical evaluation process to avoid wasting resources. Bayesian Designs for Phase I–II Clinical Trials describes how phase I–II designs can serve as a bridge or protective barrier between preclinical studies and large confirmatory clinical trials. It illustrates many of the severe drawbacks with conventional methods used for early-phase clinical trials and presents numerous Bayesian designs for human clinical trials of new experimental treatment regimes. Written by research leaders from the University of Texas MD Anderson Cancer Center, this book shows how Bayesian designs for early-phase clinical trials can explore, refine, and optimize new experimental treatments. It emphasizes the importance of basing decisions on both efficacy and toxicity.

Principles and Practice of Clinical Trials

Principles and Practice of Clinical Trials
Author: Steven Piantadosi
Publisher: Springer Nature
Total Pages: 2573
Release: 2022-07-19
Genre: Medical
ISBN: 3319526367

This is a comprehensive major reference work for our SpringerReference program covering clinical trials. Although the core of the Work will focus on the design, analysis, and interpretation of scientific data from clinical trials, a broad spectrum of clinical trial application areas will be covered in detail. This is an important time to develop such a Work, as drug safety and efficacy emphasizes the Clinical Trials process. Because of an immense and growing international disease burden, pharmaceutical and biotechnology companies continue to develop new drugs. Clinical trials have also become extremely globalized in the past 15 years, with over 225,000 international trials ongoing at this point in time. Principles in Practice of Clinical Trials is truly an interdisciplinary that will be divided into the following areas: 1) Clinical Trials Basic Perspectives 2) Regulation and Oversight 3) Basic Trial Designs 4) Advanced Trial Designs 5) Analysis 6) Trial Publication 7) Topics Related Specific Populations and Legal Aspects of Clinical Trials The Work is designed to be comprised of 175 chapters and approximately 2500 pages. The Work will be oriented like many of our SpringerReference Handbooks, presenting detailed and comprehensive expository chapters on broad subjects. The Editors are major figures in the field of clinical trials, and both have written textbooks on the topic. There will also be a slate of 7-8 renowned associate editors that will edit individual sections of the Reference.

Small Clinical Trials

Small Clinical Trials
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 221
Release: 2001-01-01
Genre: Medical
ISBN: 0309171148

Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.

Bayesian Adaptive Methods for Clinical Trials

Bayesian Adaptive Methods for Clinical Trials
Author: Scott M. Berry
Publisher: CRC Press
Total Pages: 316
Release: 2010-07-19
Genre: Mathematics
ISBN: 1439825513

Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer's disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adapti

Bayesian Analysis with R for Drug Development

Bayesian Analysis with R for Drug Development
Author: Harry Yang
Publisher: CRC Press
Total Pages: 251
Release: 2019-06-26
Genre: Mathematics
ISBN: 1351585932

Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.

Practical Considerations for Adaptive Trial Design and Implementation

Practical Considerations for Adaptive Trial Design and Implementation
Author: Weili He
Publisher: Springer
Total Pages: 420
Release: 2014-10-15
Genre: Medical
ISBN: 1493911007

This edited volume is a definitive text on adaptive clinical trial designs from creation and customization to utilization. As this book covers the full spectrum of topics involved in the adaptive designs arena, it will serve as a valuable reference for researchers working in industry, government and academia. The target audience is anyone involved in the planning and execution of clinical trials, in particular, statisticians, clinicians, pharmacometricians, clinical operation specialists, drug supply managers, and infrastructure providers. In spite of the increased efficiency of adaptive trials in saving costs and time, ultimately getting drugs to patients sooner, their adoption in clinical development is still relatively low. One of the chief reasons is the higher complexity of adaptive design trials as compared to traditional trials. Barriers to the use of clinical trials with adaptive features include the concerns about the integrity of study design and conduct, the risk of regulatory non-acceptance, the need for an advanced infrastructure for complex randomization and clinical supply scenarios, change management for process and behavior modifications, extensive resource requirements for the planning and design of adaptive trials and the potential to relegate key decision makings to outside entities. There have been limited publications that address these practical considerations and recommend best practices and solutions. This book fills this publication gap, providing guidance on practical considerations for adaptive trial design and implementation. The book comprises three parts: Part I focuses on practical considerations from a design perspective, whereas Part II delineates practical considerations related to the implementation of adaptive trials. Putting it all together, Part III presents four illustrative case studies ranging from description and discussion of specific adaptive trial design considerations to the logistic and regulatory issues faced in trial implementation. Bringing together the expertise of leading key opinion leaders from pharmaceutical industry, academia, and regulatory agencies, this book provides a balanced and comprehensive coverage of practical considerations for adaptive trial design and implementation.

Randomization in Clinical Trials

Randomization in Clinical Trials
Author: William F. Rosenberger
Publisher: John Wiley & Sons
Total Pages: 284
Release: 2015-11-23
Genre: Mathematics
ISBN: 1118742249

Praise for the First Edition “All medical statisticians involved in clinical trials should read this book...” - Controlled Clinical Trials Featuring a unique combination of the applied aspects of randomization in clinical trials with a nonparametric approach to inference, Randomization in Clinical Trials: Theory and Practice, Second Edition is the go-to guide for biostatisticians and pharmaceutical industry statisticians. Randomization in Clinical Trials: Theory and Practice, Second Edition features: Discussions on current philosophies, controversies, and new developments in the increasingly important role of randomization techniques in clinical trials A new chapter on covariate-adaptive randomization, including minimization techniques and inference New developments in restricted randomization and an increased focus on computation of randomization tests as opposed to the asymptotic theory of randomization tests Plenty of problem sets, theoretical exercises, and short computer simulations using SAS® to facilitate classroom teaching, simplify the mathematics, and ease readers’ understanding Randomization in Clinical Trials: Theory and Practice, Second Edition is an excellent reference for researchers as well as applied statisticians and biostatisticians. The Second Edition is also an ideal textbook for upper-undergraduate and graduate-level courses in biostatistics and applied statistics. William F. Rosenberger, PhD, is University Professor and Chairman of the Department of Statistics at George Mason University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics, and author of over 80 refereed journal articles, as well as The Theory of Response-Adaptive Randomization in Clinical Trials, also published by Wiley. John M. Lachin, ScD, is Research Professor in the Department of Epidemiology and Biostatistics as well as in the Department of Statistics at The George Washington University. A Fellow of the American Statistical Association and the Society for Clinical Trials, Dr. Lachin is actively involved in coordinating center activities for clinical trials of diabetes. He is the author of Biostatistical Methods: The Assessment of Relative Risks, Second Edition, also published by Wiley.

Bayesian Approaches to Clinical Trials and Health-Care Evaluation

Bayesian Approaches to Clinical Trials and Health-Care Evaluation
Author: David J. Spiegelhalter
Publisher: John Wiley & Sons
Total Pages: 416
Release: 2004-01-16
Genre: Mathematics
ISBN: 9780471499756

READ ALL ABOUT IT! David Spiegelhalter has recently joined the ranks of Isaac Newton, Charles Darwin and Stephen Hawking by becoming a fellow of the Royal Society. Originating from the Medical Research Council’s biostatistics unit, David has played a leading role in the Bristol heart surgery and Harold Shipman inquiries. Order a copy of this author’s comprehensive text TODAY! The Bayesian approach involves synthesising data and judgement in order to reach conclusions about unknown quantities and make predictions. Bayesian methods have become increasingly popular in recent years, notably in medical research, and although there are a number of books on Bayesian analysis, few cover clinical trials and biostatistical applications in any detail. Bayesian Approaches to Clinical Trials and Health-Care Evaluation provides a valuable overview of this rapidly evolving field, including basic Bayesian ideas, prior distributions, clinical trials, observational studies, evidence synthesis and cost-effectiveness analysis. Covers a broad array of essential topics, building from the basics to more advanced techniques. Illustrated throughout by detailed case studies and worked examples Includes exercises in all chapters Accessible to anyone with a basic knowledge of statistics Authors are at the forefront of research into Bayesian methods in medical research Accompanied by a Web site featuring data sets and worked examples using Excel and WinBUGS - the most widely used Bayesian modelling package Bayesian Approaches to Clinical Trials and Health-Care Evaluation is suitable for students and researchers in medical statistics, statisticians in the pharmaceutical industry, and anyone involved in conducting clinical trials and assessment of health-care technology.

Regression Modeling Strategies

Regression Modeling Strategies
Author: Frank E. Harrell
Publisher: Springer Science & Business Media
Total Pages: 583
Release: 2013-03-09
Genre: Mathematics
ISBN: 147573462X

Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".

Case Studies in Bayesian Statistics

Case Studies in Bayesian Statistics
Author: Constantine Gatsonis
Publisher: Springer Science & Business Media
Total Pages: 441
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461300355

The 5th Workshop on Case Studies in Bayesian Statistics was held at the Carnegie Mellon University campus on September 24-25, 1999. As in the past, the workshop featured both invited and contributed case studies. The former were presented and discussed in detail while the latter were presented in poster format. This volume contains the three invited case studies with the accompanying discussion as well as ten contributed pa pers selected by a refereeing process. The majority of case studies in the volume come from biomedical research. However, the reader will also find studies in education and public policy, environmental pollution, agricul ture, and robotics. INVITED PAPERS The three invited cases studies at the workshop discuss problems in ed ucational policy, clinical trials design, and environmental epidemiology, respectively. 1. In School Choice in NY City: A Bayesian Analysis ofan Imperfect Randomized Experiment J. Barnard, C. Frangakis, J. Hill, and D. Rubin report on the analysis of the data from a randomized study conducted to evaluate the New YorkSchool Choice Scholarship Pro gram. The focus ofthe paper is on Bayesian methods for addressing the analytic challenges posed by extensive non-compliance among study participants and substantial levels of missing data. 2. In Adaptive Bayesian Designs for Dose-Ranging Drug Trials D. Berry, P. Mueller, A. Grieve, M. Smith, T. Parke, R. Blazek, N.