Artificial Neural Networks - ICANN 2008

Artificial Neural Networks - ICANN 2008
Author: Věra Kůrková
Publisher: Springer Science & Business Media
Total Pages: 1012
Release: 2008
Genre: Artificial intelligence
ISBN: 3540875581

This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The second volume is devoted to pattern recognition and data analysis, hardware and embedded systems, computational neuroscience, connectionistic cognitive science, neuroinformatics and neural dynamics. it also contains papers from two special sessions coupling, synchronies, and firing patterns: from cognition to disease, and constructive neural networks and two workshops new trends in self-organization and optimization of artificial neural networks, and adaptive mechanisms of the perception-action cycle.

Artificial Neural Networks - ICANN 2008

Artificial Neural Networks - ICANN 2008
Author: Vera Kurkova-Pohlova
Publisher: Springer
Total Pages: 1053
Release: 2008-09-08
Genre: Computers
ISBN: 3540875360

This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The first volume contains papers on mathematical theory of neurocomputing, learning algorithms, kernel methods, statistical learning and ensemble techniques, support vector machines, reinforcement learning, evolutionary computing, hybrid systems, self-organization, control and robotics, signal and time series processing and image processing.

Artificial Neural Networks - ICANN 2008

Artificial Neural Networks - ICANN 2008
Author: Vera Kurkova-Pohlova
Publisher: Springer
Total Pages: 1012
Release: 2008-08-29
Genre: Computers
ISBN: 354087559X

This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The second volume is devoted to pattern recognition and data analysis, hardware and embedded systems, computational neuroscience, connectionistic cognitive science, neuroinformatics and neural dynamics. it also contains papers from two special sessions coupling, synchronies, and firing patterns: from cognition to disease, and constructive neural networks and two workshops new trends in self-organization and optimization of artificial neural networks, and adaptive mechanisms of the perception-action cycle.

Artificial Neural Networks - ICANN 2008

Artificial Neural Networks - ICANN 2008
Author: Vera Kůrková
Publisher: Springer Science & Business Media
Total Pages: 1053
Release: 2008-08-25
Genre: Computers
ISBN: 3540875352

This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The first volume contains papers on mathematical theory of neurocomputing, learning algorithms, kernel methods, statistical learning and ensemble techniques, support vector machines, reinforcement learning, evolutionary computing, hybrid systems, self-organization, control and robotics, signal and time series processing and image processing.

Python in Neuroscience

Python in Neuroscience
Author: Eilif Muller
Publisher: Frontiers Media SA
Total Pages: 275
Release: 2015-07-23
Genre: Neurosciences. Biological psychiatry. Neuropsychiatry
ISBN: 2889196089

Python is rapidly becoming the de facto standard language for systems integration. Python has a large user and developer-base external to theneuroscience community, and a vast module library that facilitates rapid and maintainable development of complex and intricate systems. In this Research Topic, we highlight recent efforts to develop Python modules for the domain of neuroscience software and neuroinformatics: - simulators and simulator interfaces - data collection and analysis - sharing, re-use, storage and databasing of models and data - stimulus generation - parameter search and optimization - visualization - VLSI hardware interfacing. Moreover, we seek to provide a representative overview of existing mature Python modules for neuroscience and neuroinformatics, to demonstrate a critical mass and show that Python is an appropriate choice of interpreter interface for future neuroscience software development.

The Relevance of the Time Domain to Neural Network Models

The Relevance of the Time Domain to Neural Network Models
Author: A. Ravishankar Rao
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2011-09-18
Genre: Medical
ISBN: 1461407249

A significant amount of effort in neural modeling is directed towards understanding the representation of information in various parts of the brain, such as cortical maps [6], and the paths along which sensory information is processed. Though the time domain is integral an integral aspect of the functioning of biological systems, it has proven very challenging to incorporate the time domain effectively in neural network models. A promising path that is being explored is to study the importance of synchronization in biological systems. Synchronization plays a critical role in the interactions between neurons in the brain, giving rise to perceptual phenomena, and explaining multiple effects such as visual contour integration, and the separation of superposed inputs. The purpose of this book is to provide a unified view of how the time domain can be effectively employed in neural network models. A first direction to consider is to deploy oscillators that model temporal firing patterns of a neuron or a group of neurons. There is a growing body of research on the use of oscillatory neural networks, and their ability to synchronize under the right conditions. Such networks of synchronizing elements have been shown to be effective in image processing and segmentation tasks, and also in solving the binding problem, which is of great significance in the field of neuroscience. The oscillatory neural models can be employed at multiple scales of abstraction, ranging from individual neurons, to groups of neurons using Wilson-Cowan modeling techniques and eventually to the behavior of entire brain regions as revealed in oscillations observed in EEG recordings. A second interesting direction to consider is to understand the effect of different neural network topologies on their ability to create the desired synchronization. A third direction of interest is the extraction of temporal signaling patterns from brain imaging data such as EEG and fMRI. Hence this Special Session is of emerging interest in the brain sciences, as imaging techniques are able to resolve sufficient temporal detail to provide an insight into how the time domain is deployed in cognitive function. The following broad topics will be covered in the book: Synchronization, phase-locking behavior, image processing, image segmentation, temporal pattern analysis, EEG analysis, fMRI analyis, network topology and synchronizability, cortical interactions involving synchronization, and oscillatory neural networks. This book will benefit readers interested in the topics of computational neuroscience, applying neural network models to understand brain function, extracting temporal information from brain imaging data, and emerging techniques for image segmentation using oscillatory networks

Meta-Learning in Computational Intelligence

Meta-Learning in Computational Intelligence
Author: Norbert Jankowski
Publisher: Springer
Total Pages: 362
Release: 2011-06-10
Genre: Technology & Engineering
ISBN: 3642209807

Computational Intelligence (CI) community has developed hundreds of algorithms for intelligent data analysis, but still many hard problems in computer vision, signal processing or text and multimedia understanding, problems that require deep learning techniques, are open. Modern data mining packages contain numerous modules for data acquisition, pre-processing, feature selection and construction, instance selection, classification, association and approximation methods, optimization techniques, pattern discovery, clusterization, visualization and post-processing. A large data mining package allows for billions of ways in which these modules can be combined. No human expert can claim to explore and understand all possibilities in the knowledge discovery process. This is where algorithms that learn how to learnl come to rescue. Operating in the space of all available data transformations and optimization techniques these algorithms use meta-knowledge about learning processes automatically extracted from experience of solving diverse problems. Inferences about transformations useful in different contexts help to construct learning algorithms that can uncover various aspects of knowledge hidden in the data. Meta-learning shifts the focus of the whole CI field from individual learning algorithms to the higher level of learning how to learn. This book defines and reveals new theoretical and practical trends in meta-learning, inspiring the readers to further research in this exciting field.

Spike-timing dependent plasticity

Spike-timing dependent plasticity
Author: Henry Markram
Publisher: Frontiers E-books
Total Pages: 575
Release:
Genre:
ISBN: 2889190439

Hebb's postulate provided a crucial framework to understand synaptic alterations underlying learning and memory. Hebb's theory proposed that neurons that fire together, also wire together, which provided the logical framework for the strengthening of synapses. Weakening of synapses was however addressed by "not being strengthened", and it was only later that the active decrease of synaptic strength was introduced through the discovery of long-term depression caused by low frequency stimulation of the presynaptic neuron. In 1994, it was found that the precise relative timing of pre and postynaptic spikes determined not only the magnitude, but also the direction of synaptic alterations when two neurons are active together. Neurons that fire together may therefore not necessarily wire together if the precise timing of the spikes involved are not tighly correlated. In the subsequent 15 years, Spike Timing Dependent Plasticity (STDP) has been found in multiple brain brain regions and in many different species. The size and shape of the time windows in which positive and negative changes can be made vary for different brain regions, but the core principle of spike timing dependent changes remain. A large number of theoretical studies have also been conducted during this period that explore the computational function of this driving principle and STDP algorithms have become the main learning algorithm when modeling neural networks. This Research Topic will bring together all the key experimental and theoretical research on STDP.

Constructive Neural Networks

Constructive Neural Networks
Author: Leonardo Franco
Publisher: Springer
Total Pages: 296
Release: 2009-11-25
Genre: Technology & Engineering
ISBN: 364204512X

This book presents a collection of invited works that consider constructive methods for neural networks, taken primarily from papers presented at a special th session held during the 18 International Conference on Artificial Neural Networks (ICANN 2008) in September 2008 in Prague, Czech Republic. The book is devoted to constructive neural networks and other incremental learning algorithms that constitute an alternative to the standard method of finding a correct neural architecture by trial-and-error. These algorithms provide an incremental way of building neural networks with reduced topologies for classification problems. Furthermore, these techniques produce not only the multilayer topologies but the value of the connecting synaptic weights that are determined automatically by the constructing algorithm, avoiding the risk of becoming trapped in local minima as might occur when using gradient descent algorithms such as the popular back-propagation. In most cases the convergence of the constructing algorithms is guaranteed by the method used. Constructive methods for building neural networks can potentially create more compact and robust models which are easily implemented in hardware and used for embedded systems. Thus a growing amount of current research in neural networks is oriented towards this important topic. The purpose of this book is to gather together some of the leading investigators and research groups in this growing area, and to provide an overview of the most recent advances in the techniques being developed for constructive neural networks and their applications.

Description Logics in Multimedia Reasoning

Description Logics in Multimedia Reasoning
Author: Leslie F. Sikos
Publisher: Springer
Total Pages: 215
Release: 2017-06-28
Genre: Computers
ISBN: 3319540661

This book illustrates how to use description logic-based formalisms to their full potential in the creation, indexing, and reuse of multimedia semantics. To do so, it introduces researchers to multimedia semantics by providing an in-depth review of state-of-the-art standards, technologies, ontologies, and software tools. It draws attention to the importance of formal grounding in the knowledge representation of multimedia objects, the potential of multimedia reasoning in intelligent multimedia applications, and presents both theoretical discussions and best practices in multimedia ontology engineering. Readers already familiar with mathematical logic, Internet, and multimedia fundamentals will learn to develop formally grounded multimedia ontologies, and map concept definitions to high-level descriptors. The core reasoning tasks, reasoning algorithms, and industry-leading reasoners are presented, while scene interpretation via reasoning is also demonstrated. Overall, this book offers readers an essential introduction to the formal grounding of web ontologies, as well as a comprehensive collection and review of description logics (DLs) from the perspectives of expressivity and reasoning complexity. It covers best practices for developing multimedia ontologies with formal grounding to guarantee decidability and obtain the desired level of expressivity while maximizing the reasoning potential. The capabilities of such multimedia ontologies are demonstrated by DL implementations with an emphasis on multimedia reasoning applications.