Tensors in Image Processing and Computer Vision

Tensors in Image Processing and Computer Vision
Author: Santiago Aja-Fernández
Publisher: Springer Science & Business Media
Total Pages: 468
Release: 2009-05-21
Genre: Computers
ISBN: 1848822995

Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the state of the art in this new branch of signal processing, offering a great deal of research and discussions by leading experts in the area. The wide-ranging volume offers an overview into cutting-edge research into the newest tensor processing techniques and their application to different domains related to computer vision and image processing. This comprehensive text will prove to be an invaluable reference and resource for researchers, practitioners and advanced students working in the area of computer vision and image processing.

Signal Processing for Computer Vision

Signal Processing for Computer Vision
Author: Gösta H. Granlund
Publisher: Springer Science & Business Media
Total Pages: 446
Release: 2013-03-09
Genre: Technology & Engineering
ISBN: 1475723776

Signal Processing for Computer Vision is a unique and thorough treatment of the signal processing aspects of filters and operators for low-level computer vision. Computer vision has progressed considerably over recent years. From methods only applicable to simple images, it has developed to deal with increasingly complex scenes, volumes and time sequences. A substantial part of this book deals with the problem of designing models that can be used for several purposes within computer vision. These partial models have some general properties of invariance generation and generality in model generation. Signal Processing for Computer Vision is the first book to give a unified treatment of representation and filtering of higher order data, such as vectors and tensors in multidimensional space. Included is a systematic organisation for the implementation of complex models in a hierarchical modular structure and novel material on adaptive filtering using tensor data representation. Signal Processing for Computer Vision is intended for final year undergraduate and graduate students as well as engineers and researchers in the field of computer vision and image processing.

Vision with Direction

Vision with Direction
Author: Josef Bigun
Publisher: Springer Science & Business Media
Total Pages: 396
Release: 2006-02-09
Genre: Computers
ISBN: 3540273220

Image analysis is a computational feat which humans show excellence in, in comp- ison with computers. Yet the list of applications that rely on automatic processing of images has been growing at a fast pace. Biometric authentication by face, ?ngerprint, and iris, online character recognition in cell phones as well as drug design tools are but a few of its benefactors appearing on the headlines. This is, of course, facilitated by the valuable output of the resarch community in the past 30 years. The pattern recognition and computer vision communities that study image analysis have large conferences, which regularly draw 1000 parti- pants. In a way this is not surprising, because much of the human-speci?c activities critically rely on intelligent use of vision. If routine parts of these activities can be automated, much is to be gained in comfort and sustainable development. The - search ?eld could equally be called visualintelligence because it concerns nearly all activities of awake humans. Humans use or rely on pictures or pictorial languages to represent, analyze, and develop abstract metaphors related to nearly every aspect of thinking and behaving, be it science, mathematics, philosopy, religion, music, or emotions. The present volume is an introductory textbook on signal analysis of visual c- putation for senior-level undergraduates or for graduate students in science and - gineering. My modest goal has been to present the frequently used techniques to analyze images in a common framework–directional image processing.

Visualization and Processing of Tensor Fields

Visualization and Processing of Tensor Fields
Author: Joachim Weickert
Publisher: Springer Science & Business Media
Total Pages: 478
Release: 2007-06-25
Genre: Mathematics
ISBN: 3540312722

Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.

Tensor Voting

Tensor Voting
Author: Philippos Mordohai
Publisher: Springer Nature
Total Pages: 126
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031022424

This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organization methodology applicable in situations that may seem heterogeneous initially. We show how several problems can be posed as the organization of the inputs into salient perceptual structures, which are inferred via tensor voting. The work presented here extends the original tensor voting framework with the addition of boundary inference capabilities; a novel re-formulation of the framework applicable to high-dimensional spaces and the development of algorithms for computer vision and machine learning problems. We show complete analysis for some problems, while we briefly outline our approach for other applications and provide pointers to relevant sources.

Computer Vision and Image Processing

Computer Vision and Image Processing
Author: Manas Kamal Bhuyan
Publisher: CRC Press
Total Pages: 465
Release: 2019-11-05
Genre: Computers
ISBN: 1351248383

The book familiarizes readers with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the book is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the book takes a problem-solving approach.

Computer Vision and Image Processing

Computer Vision and Image Processing
Author: Balasubramanian Raman
Publisher: Springer
Total Pages: 0
Release: 2022-07-24
Genre: Computers
ISBN: 9783031113451

This two-volume set (CCIS 1567-1568) constitutes the refereed proceedings of the 6h International Conference on Computer Vision and Image Processing, CVIP 2021, held in Rupnagar, India, in December 2021. The 70 full papers and 20 short papers were carefully reviewed and selected from the 260 submissions. The papers present recent research on such topics as biometrics, forensics, content protection, image enhancement/super-resolution/restoration, motion and tracking, image or video retrieval, image, image/video processing for autonomous vehicles, video scene understanding, human-computer interaction, document image analysis, face, iris, emotion, sign language and gesture recognition, 3D image/video processing, action and event detection/recognition, medical image and video analysis, vision-based human GAIT analysis, remote sensing, and more.

Deep Learning with PyTorch

Deep Learning with PyTorch
Author: Luca Pietro Giovanni Antiga
Publisher: Simon and Schuster
Total Pages: 518
Release: 2020-07-01
Genre: Computers
ISBN: 1638354073

“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Dictionary of Computer Vision and Image Processing

Dictionary of Computer Vision and Image Processing
Author: Robert B. Fisher
Publisher: John Wiley & Sons
Total Pages: 442
Release: 2013-11-08
Genre: Computers
ISBN: 1118706811

Written by leading researchers, the 2nd Edition of the Dictionary of Computer Vision & Image Processing is a comprehensive and reliable resource which now provides explanations of over 3500 of the most commonly used terms across image processing, computer vision and related fields including machine vision. It offers clear and concise definitions with short examples or mathematical precision where necessary for clarity that ultimately makes it a very usable reference for new entrants to these fields at senior undergraduate and graduate level, through to early career researchers to help build up knowledge of key concepts. As the book is a useful source for recent terminology and concepts, experienced professionals will also find it a valuable resource for keeping up to date with the latest advances. New features of the 2nd Edition: Contains more than 1000 new terms, notably an increased focus on image processing and machine vision terms; Includes the addition of reference links across the majority of terms pointing readers to further information about the concept under discussion so that they can continue to expand their understanding; Now available as an eBook with enhanced content: approximately 50 videos to further illustrate specific terms; active cross-linking between terms so that readers can easily navigate from one related term to another and build up a full picture of the topic in question; and hyperlinked references to fully embed the text in the current literature.

Template Matching Techniques in Computer Vision

Template Matching Techniques in Computer Vision
Author: Roberto Brunelli
Publisher: John Wiley & Sons
Total Pages: 348
Release: 2009-04-29
Genre: Science
ISBN: 9780470744048

The detection and recognition of objects in images is a key research topic in the computer vision community. Within this area, face recognition and interpretation has attracted increasing attention owing to the possibility of unveiling human perception mechanisms, and for the development of practical biometric systems. This book and the accompanying website, focus on template matching, a subset of object recognition techniques of wide applicability, which has proved to be particularly effective for face recognition applications. Using examples from face processing tasks throughout the book to illustrate more general object recognition approaches, Roberto Brunelli: examines the basics of digital image formation, highlighting points critical to the task of template matching; presents basic and advanced template matching techniques, targeting grey-level images, shapes and point sets; discusses recent pattern classification paradigms from a template matching perspective; illustrates the development of a real face recognition system; explores the use of advanced computer graphics techniques in the development of computer vision algorithms. Template Matching Techniques in Computer Vision is primarily aimed at practitioners working on the development of systems for effective object recognition such as biometrics, robot navigation, multimedia retrieval and landmark detection. It is also of interest to graduate students undertaking studies in these areas.