Tensor Norms and Operator Ideals

Tensor Norms and Operator Ideals
Author: A. Defant
Publisher: Elsevier
Total Pages: 579
Release: 1992-11-26
Genre: Mathematics
ISBN: 0080872875

The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resumé and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exercises.

Introduction to Tensor Products of Banach Spaces

Introduction to Tensor Products of Banach Spaces
Author: Raymond A. Ryan
Publisher: Springer Science & Business Media
Total Pages: 229
Release: 2013-06-29
Genre: Mathematics
ISBN: 1447139038

This is the first ever truly introductory text to the theory of tensor products of Banach spaces. Coverage includes a full treatment of the Grothendieck theory of tensor norms, approximation property and the Radon-Nikodym Property, Bochner and Pettis integrals. Each chapter contains worked examples and a set of exercises, and two appendices offer material on summability in Banach spaces and properties of spaces of measures.

The Metric Theory of Tensor Products

The Metric Theory of Tensor Products
Author: Joseph Diestel
Publisher: American Mathematical Soc.
Total Pages: 294
Release: 2008-01-01
Genre: Mathematics
ISBN: 9780821872697

Famed mathematician Alexander Grothendieck, in his Resume, set forth his plan for the study of the finer structure of Banach spaces. He used tensor products as a foundation upon which he built the classes of operators most important to the study of Banach spaces and established the importance of the "local" theory in the study of these operators and the spaces they act upon. When Lintenstrauss and Pelczynski addressed his work at the rebirth of Banach space theory, they shed his Fundamental Inequality in the trappings of operator ideals by shedding the tensorial formulation. The authors of this book, however, feel that there is much of value in Grothendieck's original formulations in the Resume and here endeavor to "expose the Resume" by presenting most of Grothendieck's arguments using the mathematical tools that were available to him at the time.

Recent Advances in Operator Theory, Operator Algebras, and their Applications

Recent Advances in Operator Theory, Operator Algebras, and their Applications
Author: Dumitru Gaspar
Publisher: Springer Science & Business Media
Total Pages: 351
Release: 2006-03-30
Genre: Mathematics
ISBN: 3764373148

This book offers peer-reviewed articles from the 19th International Conference on Operator Theory, Summer 2002. It contains recent developments in a broad range of topics from operator theory, operator algebras and their applications, particularly to differential analysis, complex functions, ergodic theory, mathematical physics, matrix analysis, and systems theory. The book covers a large variety of topics including single operator theory, C*-algebras, diffrential operators, integral transforms, stochastic processes and operators, and more.

Descriptive Topology and Functional Analysis II

Descriptive Topology and Functional Analysis II
Author: Juan Carlos Ferrando
Publisher: Springer
Total Pages: 302
Release: 2019-06-02
Genre: Mathematics
ISBN: 3030173763

This book is the result of a meeting on Topology and Functional Analysis, and is dedicated to Professor Manuel López-Pellicer's mathematical research. Covering topics in descriptive topology and functional analysis, including topological groups and Banach space theory, fuzzy topology, differentiability and renorming, tensor products of Banach spaces and aspects of Cp-theory, this volume is particularly useful to young researchers wanting to learn about the latest developments in these areas.

Orthonormal Systems and Banach Space Geometry

Orthonormal Systems and Banach Space Geometry
Author: Albrecht Pietsch
Publisher: Cambridge University Press
Total Pages: 565
Release: 1998-09-10
Genre: Mathematics
ISBN: 0521624622

This book describes the interplay between orthonormal expansions and Banach space geometry.

Bilinear Maps and Tensor Products in Operator Theory

Bilinear Maps and Tensor Products in Operator Theory
Author: Carlos S. Kubrusly
Publisher: Springer Nature
Total Pages: 263
Release: 2023-12-18
Genre: Mathematics
ISBN: 3031340930

This text covers a first course in bilinear maps and tensor products intending to bring the reader from the beginning of functional analysis to the frontiers of exploration with tensor products. Tensor products, particularly in infinite-dimensional normed spaces, are heavily based on bilinear maps. The author brings these topics together by using bilinear maps as an auxiliary, yet fundamental, tool for accomplishing a consistent, useful, and straightforward theory of tensor products. The author’s usual clear, friendly, and meticulously prepared exposition presents the material in ways that are designed to make grasping concepts easier and simpler. The approach to the subject is uniquely presented from an operator theoretic view. An introductory course in functional analysis is assumed. In order to keep the prerequisites as modest as possible, there are two introductory chapters, one on linear spaces (Chapter 1) and another on normed spaces (Chapter 5), summarizing the background material required for a thorough understanding. The reader who has worked through this text will be well prepared to approach more advanced texts and additional literature on the subject. The book brings the theory of tensor products on Banach spaces to the edges of Grothendieck's theory, and changes the target towards tensor products of bounded linear operators. Both Hilbert-space and Banach-space operator theory are considered and compared from the point of view of tensor products. This is done from the first principles of functional analysis up to current research topics, with complete and detailed proofs. The first four chapters deal with the algebraic theory of linear spaces, providing various representations of the algebraic tensor product defined in an axiomatic way. Chapters 5 and 6 give the necessary background concerning normed spaces and bounded bilinear mappings. Chapter 7 is devoted to the study of reasonable crossnorms on tensor product spaces, discussing in detail the important extreme realizations of injective and projective tensor products. In Chapter 8 uniform crossnorms are introduced in which the tensor products of operators are bounded; special attention is paid to the finitely generated situation. The concluding Chapter 9 is devoted to the study of the Hilbert space setting and the spectral properties of the tensor products of operators. Each chapter ends with a section containing “Additional Propositions" and suggested readings for further studies.