Techniques Of Asymptotic Analysis
Download Techniques Of Asymptotic Analysis full books in PDF, epub, and Kindle. Read online free Techniques Of Asymptotic Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : L. Sirovich |
Publisher | : Springer Science & Business Media |
Total Pages | : 328 |
Release | : 1971-03-04 |
Genre | : Mathematics |
ISBN | : |
"In this second part of Willie Sugg's history of Cambridgeshire cricket the author focuses on the first documented period of sustained success for a Cambridgeshire club - that of the Cambridge Cricket Club." (back cover) Part two of three.
Author | : N. G. de Bruijn |
Publisher | : Courier Corporation |
Total Pages | : 225 |
Release | : 2014-03-05 |
Genre | : Mathematics |
ISBN | : 0486150798 |
This pioneering study/textbook in a crucial area of pure and applied mathematics features worked examples instead of the formulation of general theorems. Extensive coverage of saddle-point method, iteration, and more. 1958 edition.
Author | : David Y. Gao |
Publisher | : CRC Press |
Total Pages | : 270 |
Release | : 2006-05-03 |
Genre | : Mathematics |
ISBN | : 1420011731 |
Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important m
Author | : Peter David Miller |
Publisher | : American Mathematical Soc. |
Total Pages | : 488 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 0821840789 |
This book is a survey of asymptotic methods set in the current applied research context of wave propagation. It stresses rigorous analysis in addition to formal manipulations. Asymptotic expansions developed in the text are justified rigorously, and students are shown how to obtain solid error estimates for asymptotic formulae. The book relates examples and exercises to subjects of current research interest, such as the problem of locating the zeros of Taylor polynomials of entirenonvanishing functions and the problem of counting integer lattice points in subsets of the plane with various geometrical properties of the boundary. The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and appliedmathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects. The book is ideally suited to the needs of a graduate student who, on the one hand, wants to learn basic applied mathematics, and on the other, wants to understand what is needed to make the various arguments rigorous. Down here in the Village, this is knownas the Courant point of view!! --Percy Deift, Courant Institute, New York Peter D. Miller is an associate professor of mathematics at the University of Michigan at Ann Arbor. He earned a Ph.D. in Applied Mathematics from the University of Arizona and has held positions at the Australian NationalUniversity (Canberra) and Monash University (Melbourne). His current research interests lie in singular limits for integrable systems.
Author | : Jean Cousteix |
Publisher | : Springer Science & Business Media |
Total Pages | : 437 |
Release | : 2007-03-22 |
Genre | : Science |
ISBN | : 3540464891 |
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows.
Author | : Norman Bleistein |
Publisher | : Courier Corporation |
Total Pages | : 453 |
Release | : 1986-01-01 |
Genre | : Mathematics |
ISBN | : 0486650820 |
Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.
Author | : R. B. White |
Publisher | : World Scientific |
Total Pages | : 430 |
Release | : 2010 |
Genre | : Mathematics |
ISBN | : 1848166079 |
"This is a useful volume in which a wide selection of asymptotic techniques is clearly presented in a form suitable for both applied mathematicians and Physicists who require an introduction to asymptotic techniques." --Book Jacket.
Author | : Daniel Bouche |
Publisher | : Springer Science & Business Media |
Total Pages | : 540 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642605176 |
Numerically rigorous techniques for the computation of electromagnetic fields diffracted by an object become computationally intensive, if not impractical to handle, at high frequencies and one must resort to asymptotic methods to solve the scattering problem at short wavelengths. The asymptotic methods provide closed form expansions for the diffracted fields and are also useful for eliciting physical interpretations of the various diffraction phenomena. One of the principal objectives of this book is to discuss the different asymptotic methods in a unified manner. Although the book contains explicit formulas for computing the field diffracted by conducting or dielectric-coated objects, it also provides the mathematical foundations of the different methods and explains how they are interrelated.
Author | : Lawrence Sirovich |
Publisher | : Springer Science & Business Media |
Total Pages | : 314 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 1461264022 |
These notes originate from a one semester course which forms part of the "Math Methods" cycle at Brown. In the hope that these notes might prove useful for reference purposes several additional sections have been included and also a table of contents and index. Although asymptotic analysis is now enjoying a period of great vitality, these notes do not reflect a research oriented course. The course is aimed toward people in applied mathematics, physics, engineering, etc., who have a need for asymptotic analysis in their work. The choice of subjects has been largely dictated by the likelihood of application. Also abstraction and generality have not been pursued. Technique and computation are given equal prominence with theory. Both rigorous and formal theory is presented --very often in tandem. In practice, the means for a rigorous analysis are not always available. For this reason a goal has been the cultivation of mature formal reasoning. Therefore, during the course of lectures formal presentations gradually eclipse rigorous presentations. When this occurs, rigorous proofs are given as exercises or in the case of lengthy proofs, reference is made to the Reading List at the end.
Author | : Johan Grasman |
Publisher | : Springer Science & Business Media |
Total Pages | : 242 |
Release | : 1999-03-08 |
Genre | : Mathematics |
ISBN | : 9783540644354 |
Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the Itô calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.